
Redefining Input in X

Peter Hutterer
peter@cs.unisa.edu.au



why?





multiple input devices!



(X Input Extension)

server device handling



Core events:

Events defined in the core X protocol

XI events:

Events with device ID, defined in the XI 
protocol extension.



Core pointer

virtual device, cannot send XI events

Core keyboard 

virtual device, cannot send XI events

XI devices 

no core events but hotpluggy goodness



(numbers rounded to the nearest percent) 

0

25

50

75

100

in %

Core events Xinput



one cursor 

one keyboard focus



MPX
Multi-Pointer X



Multiple input devices. Anytime. Anywhere.



What is an input device?



virtual input points

physical devices



virtual input points

physical devices



virtual input points

physical devices

maste
r device

s



virtual input points

physical devices

maste
r device

s

slav
e device

s





Master pointer are cursors

Master keyboard are keyboard foci

• can send core events

• are always virtual

Slave devices may be attached to a master.



Slave devices route event through master.

3 events per event:

• XI event from slave

• core event from master

• XI event from master



• Slave devices can be plugged and unplugged 
at any time.

• New master devices can be created and 
removed at any time.

• Flexible attachment!



• Slave devices can be plugged and unplugged 
at any time.

• New master devices can be created and 
removed at any time.

• Flexible attachment!



• Slave devices can be plugged and unplugged 
at any time.

• New master devices can be created and 
removed at any time.

• Flexible attachment!

dynamic in
put



Plan A:

• Applications can program multi-user interfaces with 
the XInput API

• per-device events

• per-device APIs

• eternal happiness



What about the other 100%?



applied insanity 101

Multiple devices in standard apps



The three capital offences:

• Duplicate enter/leave events

• Inconsistent event sequences. 

• Which device was it again?







Solution: 

One Enter/Leave event per window.



Inconsistent event sequences:

Button 1 down

drag

drag

Button 1 up

Button 1 down

Panic!



Inconsistent event sequences:

G
rab

 o
w

n
ersh

ip

Button 1 down

drag

drag

Button 1 up

Button 1 down



Inconsistent event sequences:

G
rab

 o
w

n
ersh

ip

Button 1 down

drag

drag

Button 1 up

Button 1 down

Solution: 

Only one device can send events during a 
core grab.



Ambiguity

XQueryPointer



Ambiguity

XQueryPointer



Solution: 

Each client has a ClientPointer

Ambiguity

XQueryPointer



Plan B:

• Support multiple devices in standard apps:

• Adjust the event stream

• Grab ownership

• ClientPointer

• fix all the other little things that come up

 rinse. wash. repeat.



We can use standard apps.

We can write new apps. 



We haven’t broken anything!



The Future?



0

25

50

75

100

in %

Core events Xinput

2008



0

25

50

75

100

in %

Core events Xinput

0

25

50

75

100

in %

Core events Xinput

2008 2008 + n



Support device hierarchy and hotplugging.

Allow simultaneous interaction at all times.

Adjust to group-work and two-handed input.

easy

hard

insane



Master devices may switch state when a slave 
device sends an event.

• Absolute to relative

• Different number of axes

• Change in resolution

• Number of buttons change

• Different capabilities

• etc.



Window managers



How can we avoid optical occlusion?



How can we do smart window placement for 
multiple users?



How can we even know who owns which 
devices?



Applications



Good bye menus.



Good bye traditional widgets.



Good bye WIMP?



demo



blob events



touch devices 

torch devices





Multiple Area Input Device (MAID)

X can only do point-based devices.



A new event can fix it: 

• XBlobEvent

• hotspots (automatic pointer emulation)

• areas + data (high-resolution data from devices)

• elevation (hover effects)

• rotation

• intensity (pressure, light intensity) 

• identifiers (through X Atoms)

• buttons 



Why BlobEvents?

• applications are device independent

• hot-plug capable

• multiple touch screens simultaneously

• query-able

• adjust UI to type of touchscreen

• automatic pointer emulation

• use with legacy applications



but



How do we deal with transient devices?





Devices. Lots of them.



Just one piece of the puzzle





How will we use it?



MPX

Peter Hutterer

peter@cs.unisa.edu.au

http://wearables.unisa.edu.au/mpx/


