
Design of the Portable.NET Interpreter

Rhys Weatherley, Southern Storm Software, Pty Ltd, Australia∗

Gopal V, Independent DotGNU Contributor, India†

January 6, 2003

Abstract

Portable.NET[1] is an implementation
of the Common Language Infrastructure
(CLI). Its primary design goal is portability
to as many platforms as possible, which it
acheives through the use of interpretation
rather than Just-In-Time compilation.

The bytecode format of the CLI presents
some challenges to efficient interpreter im-
plementation. Rather than directly inter-
pret, we translate the bytecode into a sim-
pler abstract machine; the Converted Vir-
tual Machine (CVM). This machine is then
interpreted using a high-performance en-
gine.

Traditionality, abstract machines have
used the same bytecode representation “on
the wire” as for execution. Our work shows
that there are definite performance advan-
tages to using different bytecode represen-
tations internally and externally.

1 Introduction

The Common Language Infrastructure
(CLI) is a set of specifications that describe

∗rweather@southern-storm.com.au
†gopalv82@symonds.net

a bytecode-based development and runtime
environment [2]. Portable.NET is an imple-
mentation of the CLI, whose primary design
goal is portability to as many platforms as
possible.

Portable.NET consists of three ma-
jor components to support the CLI: a
bytecode-based Common Language Run-
time (CLR), a C# compiler, and a C# base
class library. This article will concentrate
on the runtime engine.

The runtime engine achieves portability
primarily through the use of interpreta-
tion rather than Just-In-Time compilation.
However, the bytecode format of the CLI
presents some challenges to efficient inter-
preter implementation. This article dis-
cusses how we have overcome these chal-
lenges to build a high-performance inter-
preter for Common Intermediate Language
(CIL) programs.

We compare the performance of
Portable.NET against Mono [3] to demon-
strate how our approach differs from
direct polymorphic interpretation and full
Just-In-Time compilation.

1

case CEE_LDC_I4_0: case CEE_ADD:

sp->type = VAL_I32; ++ip;

sp->data.i = 0; --sp;

++sp; if(sp->type == VAL_I32) {

++ip; sp[-1].data.i += sp->data.i;

break; } else if(sp->type == VAL_I64) {

sp[-1].data.l += sp->data.l;

case CEE_LDC_I8: } else if(sp[-2].type == VAL_DOUBLE) {

++ip; sp[-1].data.f += sp->data.f;

sp->type = VAL_I64; } else {

sp->data.l = read64(ip); ...

ip += 8; }

++sp; break;

break;

Figure 1: Polymorphic interpretation

2 Polymorphic CIL

The CIL instruction set contains instruc-
tions to perform arithmetic, logical opera-
tions, branching, method calls, object ac-
cesses, and pointer manipulation.

A unique feature of CIL, compared to
other similar abstract machines, is that its
instructions are polymorphic. The add in-
struction can be used on integers, longs, and
floating-point values, for example. Other
virtual machines, such as the Java Virtual
Machine (JVM)[4], use separate instruc-
tions for each type.

The polymorphic nature makes direct
interpretation very inefficient, as demon-
strated by the fragment from Mono’s in-
terpreter shown in Figure 1. The types of
all stack values must be tracked explicitly,
leading to significant runtime overhead.

3 CVM instruction set

The challenge for Portable.NET was find-
ing a way to implement a high-performance
engine without writing a full Just-In-Time
compiler.

The approach we took was very similar to
a JIT: the CIL bytecode is translated into
instructions for a simpler abstract machine,
dubbed CVM (for “Converted Virtual Ma-
chine”). The CVM instructions are then
interpreted using a high-performance inter-
preter, written in C.

As each method is entered, the following
process occurs:

1. Look for a cached CVM version of the
method, and use it if found.

2. Perform bytecode verification and con-
vert the CIL into CVM.

3. Record the CVM version in the cache.

2

case COP_IADD:

sp[-2].intval += sp[-1].intval;

--sp;

++pc;

break;

case COP_LADD:

*((ILInt64 *)(&(sp[-(WORDSPERLONG * 2])))) +=

*((ILInt64 *)(&(sp[-WORDSPERLONG]))));

sp -= WORDSPERLONG;

++pc;

break;

case COP_FADD:

*((ILNativeFloat *)(&(sp[-(WORDSPERFLOAT * 2])))) +=

*((ILNativeFloat *)(&(sp[-WORDSPERFLOAT]))));

sp -= WORDSPERFLOAT;

++pc;

break;

Figure 2: Interpreting converted instructions

4. Jump into the interpreter to execute
the CVM code.

Eventually the application’s working set
of methods ends up in the CVM method
cache, and execution proceeds quickly.

Instead of a single add instruction, the
CVM instruction set has several: iadd,
ladd, fadd, etc. The conversion process
chooses the most appropriate variant, based
on the operand types reported by the byte-
code verifier.

Figure 2 shows a simplified form of the
CVM interpreter code for the converted in-
structions. The interpreter executes more
efficiently because it can assume that the
values on the stack are of the correct type
(bytecode verification having already been
performed).

Items on the CVM execution stack are a
uniform size of one word: 64-bit and larger
types straddle multiple words. The CVM
conversion process takes care of laying out
the stack according to the types of local
variables and stack items.

This isn’t necessarily a new approach - it
is normally known as “threaded interpreta-
tion” in the Forth community [5].

The complete list of CVM instructions is
given in Figure 4 at the end of this article.

4 Ramping Up

Conventional wisdom says that one should
write a hand-crafted assembly code loop to
get a fast interpreter. However, there are

3

some simple tricks that can be used to speed
up an interpreter, even in C code.

1. Register variables.

2. Computed gotos.

3. Direct threading.

4. CPU-specific unrolling.

C compilers aren’t terribly good at de-
termining which values are most-used in
switch-loop interpreter code. The compiler
invariably guesses wrong, favouring tempo-
raries over important variables like the pro-
gram counter and stack pointer. So it is
necessary to “help” the compiler a little.

The gcc compiler can bind variables to
explicit registers, as follows:

register unsigned char *pc

__asm__ ("esi");

We placed the program counter, the top
of stack pointer, and the frame pointer into
x86 registers. This produced a significant
improvement in performance compared to
straight C code, for such a small change.

The next step was to change from switch

statements to using computed goto’s. This
is normally referred to as token threading.
The break at the end of each case is re-
placed with a goto statement:

goto *main_label_table[*pc];

The main label table contains pointers
to each of the cases in the switch state-
ment, allowing the interpreter to jump di-
rectly to the next case, avoiding the over-
head of jumping back to the top of the

switch-loop. More information on com-
puted gotos can be found in the gcc doc-
umentation [6].

The result of these two changes (explicit
registers and token threading) was an inter-
preter that was so close to a hand-crafted
assembly loop that there was little point
writing one by hand.

The third step involved a change in rep-
resentation. The switch loop and token
threaded versions select instruction han-
dlers based on CVM bytecode. Instead
of storing the single-byte opcodes, we can
store the actual addresses of the opcode
handlers in the CVM instruction stream.
This is known as direct threading.

goto **((void **)pc);

Direct threading increases the size of the
CVM code by a factor of 4, because instruc-
tions are now pointers to handlers rather
than bytecodes. But it avoids the overhead
of looking up values in main label table.
On RISC platforms, this can give a signfi-
ciant increase in engine performance, but on
x86 it isn’t too impressive. If memory is an
issue, token threading gives better results.

5 Unrolling

Direct threading really shines when com-
bined with some native JIT techniques. We
implemented a “mini JIT” that converted
simple CVM instruction sequences into x86
machine code on the fly. We call this an
unroller because it essentially unrolls the
interpreter loop into straight-line machine
code.

The unroller uses simple register alloca-
tion techniques on the basic blocks of a

4

Switch Regs Token Direct Unroll Mint Mono
Sieve 499 784 1342 1583 6568 144 10040
Loop 504 779 1104 1277 13013 119 19517
Logic 490 724 1933 2378 7266 204 16311
String 1038 1110 1158 1089 1139 495 1307
Float 66 87 117 129 698 11 220
Method 430 668 1297 1471 3457 159 14977
PNetMark 392 552 891 998 3456 120 4895
% Mono 8% 11% 18% 20% 71% 2% 100%

Figure 3: Comparison of different engines using PNetMark

method. Complex instructions, especially
those involving method calls, are not un-
rolled. It isn’t possible for unrolling to
achieve the same performance as a JIT, but
it can get very close.

The primary advantage of the unroller
compared to a JIT is that it is vastly sim-
pler to implement. Portable.NET’s x86 un-
roller took about two weeks to write, and
we expect that other CPU’s would require
a similar amount of effort.

Anything that is too complicated to con-
vert is replaced with a jump back into the
interpreter core. This allows unrollers to be
developed in stages, replacing one instruc-
tion at a time and then re-testing. This
made development a lot easier than the “all
or nothing” approach required for a JIT.

6 PInvoke

The “platform invoke” (or PInvoke) feature
is a very powerful mechanism that CLI pro-
grams can use to call legacy native code.

When Portable.NET encounters a PIn-
voke method reference, it compiles a small
CVM stub which performs any necessary
parameter marshaling and then calls the

underlying native function. Upon return,
the CVM stub de-marshals the return
value.

A similar process is used for “internal-
call” methods within the runtime engine
that implement builtin features for the C#
class library.

Using CVM to perform marshaling oper-
ations simplifies native function invocations
quite considerably. Only a small amount of
platform-specific code is needed to perform
the native call, for which we use the stan-
dard “libffi” library.

7 Inlining

Method call overhead is an issue for all
interpreter-based abstract machines be-
cause method calls are more complicated
than the equivalent native code.

CVM addresses this by selectively inlin-
ing some of the more commonly used meth-
ods in the C# class library. The method
call is replaced with a special-purpose op-
code during code conversion.

The major groups of inlineable meth-
ods within Portable.NET are currently the
string, monitor, and 2D array operations.

5

Inlining common methods can have a
dramatic impact on performance. The
PNetMark “Float” benchmark improved by
a factor of 12 when 2D array operations
were inlined. Such operations are normally
very expensive in CLR’s because a method
must be called for every element get or set
operation.

8 Alternate backends

The construction of the interpreter itself
was made as modular as possible. The in-
terface between the metadata handling and
the execution was kept seperate using a
standard interface: the coder API.

Coders are an interface between the CIL
frontend and the execution engine. The de-
sign allows for the current CVM backend to
be replaced by a fully-fledged JIT without
any modification to the other components
in the system. The same frontend could be
used with the CVM engine, a native JIT,
or even a polymorphic interpreter.

9 Performance summary

Figure 3 compares the CVM interpreter
variants with the Mint polymorphic inter-
preter and the Mono x86 JIT. All tests
were done on an 866 MHz Pentium III, run-
ning RedHat Linux 7.1. Version 0.17 of
Mono and version 0.5.0 of Portable.NET
were used for these comparisons.

As can be seen, the simple techniques de-
scribed in this article produce very good re-
sults, with the unrolled version acheiving
71% overall compared to Mono’s JIT.

10 Future Work

Portable.NET’s interpreter remains a work
in progress. More optimizations are possi-
ble by introducing new CVM instructions
for special cases.

We are also investigating selective inlin-
ing [7] as an alternative to writing a hand-
crafted unroller for each CPU. The authors
of that paper also reported performance of
up to 70% of optimized C code using sim-
ple techniques. Their engine, for Objective
Caml, has a single line of platform-specific
code, to perform a flush of the CPU’s in-
struction cache. Selective inlining doesn’t
work very well for x86, but it should do well
for RISC CPU’s like the PowerPC.

In the near future, we will be in-
vestigating fully-fledged JIT coders for
Portable.NET, as well as front ends for
other instruction sets such as the Java Vir-
tual Machine.

11 Conclusion

Using a variety of well-known, yet simple,
techniques, Portable.NET is able to achieve
adequate performance for most application-
oriented tasks.

At the same time, the code is highly
portable. Ports to new platforms take a
matter of days, sometimes hours (e.g. the
author ported the code to MacOSX in a sin-
gle day).

12 Acknowledgments

Portable.NET would not have been possi-
ble without the generous assistance of vol-
unteers from the DotGNU community [8].

6

References

[1] http://www.southern-storm.com.au/

portable net.html.

[2] Common Language Infrastructure
(CLI), Partitions I to IV.

ECMA 335, European Computer Man-
ufacturers Association, 2001.

[3] http://www.go-mono.com/.

[4] Tim Lindholm and Frank Yellin.
The Java Virtual Machine Specification,

Second Edition.
Addison-Wesley, 1999.

[5] M. Anton Ertl.
A Portable Forth Engine.
In Proc. euroFORTH ’93, pages 253–

257, 1993.
http://www.complang.tuwien.ac.at/

forth/threaded-code.

[6] http://gcc.gnu.org/onlinedocs/

gcc-3.2.1/gcc/Labels-as-

Values.html.

[7] Ian Puimarta and Fabio Riccardi.
Optimizing direct threaded code by se-

lective inlining.
In SIGPLAN ’98, pages 291–300. ACM

Press, 1998.

[8] http://www.dotgnu.org/.

7

ansi2str array2ptr array len beq bfixup bge bge un bgt bgt un ble

ble un bload blt blt un bne box box ptr br bread bread elem bread field

break brfalse br long brnonnull brnull br peq br pne brtrue bstore

bwrite bwrite elem bwrite field bwrite r call call ctor call interface

call native call native raw call native void call native void raw

call virtual castclass castinterface cctor once ckarray load i4

ckarray load i8 ckarray store i8 ckfinite ckheight ckheight n cknull

cknull n delegate2fnptr dfixup dread dread elem dup dup2 dup n dup word n

dwrite dwrite elem dwrite r enter try f2d f2d aligned f2f f2f aligned

f2i f2i ovf f2iu f2iu ovf f2l f2l ovf f2lu f2lu ovf fadd fcmpg fcmpl

fdiv ffixup fix i4 i fix i4 u fmul fneg fread fread elem frem fsub fwrite

fwrite elem fwrite r get2d get static i2b i2b aligned i2b ovf i2f i2iu ovf

i2l i2p lower i2s i2s aligned i2s ovf i2ub i2ub ovf i2ul ovf i2us i2us ovf

iadd iadd ovf iadd ovf un iand icmp icmp un idiv idiv un iload iload <n>

imul imul ovf imul ovf un ineg inot ior iread iread elem iread field

iread this irem irem un ishl ishr ishr un isinst isinterface istore

istore <n> isub isub ovf isub ovf un iu2b ovf iu2f iu2i ovf iu2l iu2s ovf

iu2ub ovf iu2us ovf iwrite iwrite elem iwrite field iwrite r ixor jsr

l2f l2i l2i ovf l2ui ovf l2ul ovf ladd ladd ovf ladd ovf un land lcmp

lcmp un ldc i4 ldc i4 <n> ldc i4 s ldc i8 ldc r4 ldc r8 ldftn ldinterfftn

ldiv ldiv un ldnull ldstr ldtoken ldvirtftn lmul lmul ovf lmul ovf un

lneg lnot local alloc lor lread elem lrem lrem un lshl lshr lshr un lsub

lsub ovf lsub ovf un lu2f lu2i ovf lu2iu ovf lu2l ovf lwrite elem lxor

maddr memcpy memmove memset memzero mk local 1 mk local 2 mk local 3

mk local n mkrefany mload monitor enter monitor exit mread mstore

mwrite mwrite r new new value nop pack varargs padd i4 padd i4 r padd i8

padd i8 r padd offset padd offset n pcmp pload pload <n> pop pop2 pop n

pread pread elem pread field pread this prefix pstore pstore <n> psub

psub i4 psub i8 pushdown push thread push thread raw pwrite pwrite elem

pwrite field pwrite r refanytype refanyval refarray2ansi refarray2utf8

ret jsr return return 1 return 2 return n set2d seteq setge setgt setle

setlt setne set num args sfixup squash sread sread elem sread field

str2ansi str2utf8 string concat 2 string concat 3 string concat 4

string eq string get char string ne switch swrite swrite elem swrite field

swrite r tail call throw throw caller type from handle ubread ubread elem

ubread field unroll method usread usread elem usread field utf82str waddr

waddr native <n> wide

Figure 4: Complete CVM instruction set

8

