EggMenu

James Henstridge

<james@daa.com.au>

Copyright © 2003 James Henstridge

EggMentis a new menu and toolbar API being developed for inclusion in GTK 2.4. It aims to provide a simple
but powerful API that can be used by both simple and complex applications.

The APl is also designed to be extensible, so that it can be used in component systems like Bonobo, and extended
to handle new types of menu items or toolbar items.

Table of Contents

GNOME DeVEIOPMENE PrOCESSo ottt e e e e e e e 1
HiStOrY .o 1
PSSt . e 1
EQOMENU .. 2
Existing Menu/Toolbar API. 2
AT ONS o 3
ACHON GIOUPS . ..ottt 5
UL MEIGING oottt 5
The FULUe . .. 8
Related LiNKSo 8

Gnome Development Process

The methodology used to extend the Gnome Development Platform has changed a lot since the inception of the
project. Whereas almost anything could be added to the platform in the early days, we now have a more structured
process that allows new APIs to be tested and reviewed before migrating into the development platform.

History

In the pre-1.0 days of Gnome, the evolution of the development platform was driven by what individual hackers
were interested in. While this lead to a lot of good code that formed the foundation of early versions of Gnome, it
also produced a fair amount of poor quality widgets and APIs.

This was not a large problem back then because the APIs could be fixed as easily as they had been added. As the
Gnome platform stabilised, we had less and less opportunity to fix mistakes in the API.

Luckily, a lot of the immature or poor quality APIs were removed or fixed before the Gnome 1.0 release. There

was another round of janitorial work for the Gnome 2.0 development platform release, but the job certainly isn't
over.

Present

Because of Gnome’s guarantees of stability in the development platform, it makes a lot of sense to make sure that
immature or badly designed interfaces are not added to stable libraries. Things that go in the stable development
library will generally need to stay there for a number of years, which can be a big problem for some APIs.

Since mature, stable interfaces do not spring out of nothing, we needed a process to allow new code to be
developed, reviewed and tested in applications. This has included the introduction of the GEP process, and the
testing of new code in unstable prototype libraries.

GEP stands for “Gnome Enhancement Proposal”. The process is modelled after “Python Enhancement Proposals”

(PEPs) and “TCL Improvement Proposals” (TIPs). This involves writing up a document detailing the requirements

of an interface and posting it for public review. People who are interested provide feedback which is used to update
the GEP. This document is then used as a guide for development of the implementation. Further updates can be

made as the code matures.

Thelibegg library has also been created to prototype code and interfaces that will move to the development

platform when mature. The guidelines for inclusion in libegg are designed to encourage the maturation of the
code:

« All features will move down to a library in the stable development platform when ready. The code must only
depend on existing dependencies of the target platform library.

« All features must be "sponsored” by the maintainer of the target library. Features without support do not go in
libegg

» As soon as the code has been shipped in the stable development platform, it gets removieedgmpm.

* Interfaces use aegg_ prefix, rather than the one of the target platform library. When the code is moved, the
functions get renamed.

« The APl and/or ABI ofibegg can change at any point.

«All of libegg will always depend on the latest stable branches of platform libraries, rather than the
development branches.

EggMenu

Development of some new features targeted at GTK and Gnome 2.4 are currently moving through this process.
This paper is about a new menu and toolbar API calgdMenu

Existing Menu/Toolbar API

When writing applications against the existing menu API in GTK, the code would follow the structure of your
menus. For example, the code may be structured as follows:

« createGtkMenuBar .

« create “File"GtkMenultem .

« create &GtkMenu and attach it to the “File” menu item.
- create menu items and add them to the “F&kMenu.

« attach callbacks to each menu item

TheGtkitemFactory interface is also available that streamlines the above steps, but it is essentially the same
procedure. Building toolbars is a similar process.

This setup has a number of problems though:

« How do | disable the “Save” item? Often a user interface will have multiple ways to perform an action (menu
item, toolbar button, etc). If you want to disable the action, you will want to disable every widget that can be
used to perform the action.

< Rearranging menus is fairly involved, as it requires code modifications. This is a problem if you want to
support rearranging menus.

The libbonoboui library provides many of these features but has a few disadvantages:

* Requires the application to use CORBA, which puts some developers off.

< APl is quite different to the GTK one, which means that developers wishing to move their applications from
GTK only to GNOME will need to rewrite their menu code. This is even more of a problem for developers
who wish to support both GNOME and GTK only compiles (possibly for Windows support).

EggMenus intended as an API that provides the features needed by advanced applications, only depends on other
parts of GTK, and should be extensible enough to be usable by component systems like Bonobo.
Actions

Actions are one of the core conceptsafgMenu An action is an object that bundles the following:

eaname
e amenu label
 atoolbar label (optional)
e anicon
* akeyboard shortcut
« acallback
* state (sensitive, visible, etc)
An action essentially represents something that the user can perform, along with some information about how it
should be presented in the interface. Interfaces are provided to create menu items and toolbar items:
#include <libegg/menu/egg-action.h>
GtkWidget *egg_action_create_menu_item (EggAction *action);

GtkWidget *egg_action_create_tool_item (EggAction *action);

A program can create any number of menu items and toolbar items for an action. The menu/toolbar item will
mirror the label, icon, keyboard shortcut and state of the action. When you change any of the properties on the
action, the menu/toolbar items will change to match. Activating any of the menu/toolbar items will execute the
callbacks attached to the action.

This provides a simple way of disabling or enabling an action, as described in the previous section. By changing
the sensitive state of the action, all the related menu/toolbar items will be disabled to match.

As with menu items and toolbar itenisggMenusupports multiple types of actions. At the moment the following
types are included in the library:
EggAction roughly equivalent to the classigtkMenultem .

EggToggleAction equivalent to aGtkCheckMenultem . Has an "active" state specifying whether the
action has been checked or not.

EggRadioAction Similar to GtkRadioMenultem . A number ofEggRadioAction actions can be
linked together so that only one may be active at any one time.

An application can easily implement new types of actions. For instance, a word processor might want to implement
a font selection action that displays as a drop down list on the toolbar, and a menu item that pops up a font selector
when on a menu.

Action Groups

Most actions in an application should only be available to the user in certain situations. Some possible ways to
categorise actions include:

« Global actions that should be available in every context, such as "Quit", "New" and "Open".

* Actions that act on a particular document in a multiple document application. For instance, "Save".

« Actions that are only valid in particular editing modes. For instance, a word processor may have a set of
commands that can only be performed when editing a table.

EggMenuusesEggActionGroup objects to hold related actions. The action group acts like a dictionary
mapping action names to the action objects themselves. The API for using an action group is as follows:

EggActionGroup *egg_action_group_new (const gchar *name);

const gchar *egg_action_group_get_name (EggActionGroup *action_group);

EggAction *egg_action_group_get_action (EggActionGroup *action_group,
const gchar *action_name);

GlList *egg_action_group_list_actions (EggActionGroup *action_group);

void egg_action_group_add_action (EggActionGroup *action_group,
EggAction *action);

void egg_action_group_remove_action (EggActionGroup *action_group,

EggAction *action);

Action groups are used to add and remove sets of user actions from the user interface when used with the menu
merging system.

Ul Merging

The concept of actions in a toolkit is quite useful in its own right. When combined with a menu and toolbar
merging system, we get a very powerful API.

Menu merging is handled by tHeggMenuMerge object. This class holds a tree of nodes that represent the
menus and toolbars of the application. XML files can be loaded and unloaded to add and remove items from the
user interface.

Ul XML Files

The XML files used byEggMenuwuse a subset of the Bonobo Ul format. An example Ul file is shown below:

<?xml version="1.0"?>
<Root>
<menu>
<submenu name="FileMenu" verb="StockFileMenuAction">
<menuitem name="Open" />
</submenu>
<submenu name="HelpMenu">
<menuitem name="About" />
</submenu>
</menu>
</Root>

When the above XML file is loaded byEeggMenuMerge object, the resulting tree will look a lot like the DOM
representation of the tree. Each node in the tree is assigned a hame according to the following rules:

1.If the element has a name attribute, it will be used as the node’s name.

2.otherwise, the element name (Root, menu, submenu, etc) will be used.

Menu items, menus and toolbar items also have an action associated with them, which is given in the verb attribute.
If no verb attribute is given, then the node’s name is used instead. The action is used to work out what label and
icon the menu item should have, along with handling callbacks when the menu item is selected.

After loading the XML file into theEggMenuMerge object, an idle function is queued to actually build
the menus. This is where the actual widgets get created. The action names are looked up in one or more
EggActionGroup s associated with thEggMenuMerge object.

Merging Multiple Ul Files

When multiple XML files are loaded, more than one file may reference a particular node name. In this case,
EggMenuMerge makes note of this (to aid in demerging part of the Ul), and the top most action will be used.

To get a better feeling for how merging works, consider the following two trees:

Figure 1. filel.ui

Root
menu
submenu: FileMenu
menuitem: Open
placeholder: TestPlaceholder
submenu: HelpMenu
menuitem: About
dockitem: toolbarl
toolitem: NewButton

Figure 2. file2.ui

Root
menu
submenu: FileMenu
separator
menuitem: Quit
placeholder: TestPlaceholder
submenu: EditMenu
menuitem: Cut
dockitem: toolbarl
toolitem: OpenButton

Whenfile2.ui is merged on top diilel.ui , we get the following node tree:

Figure 3. Merged Ul

Root
menu
submenu: FileMenu
menuitem: Open
separator
menuitem: Quit
placeholder: TestPlaceholder
submenu: EditMenu
menuitem: Cut
submenu: HelpMenu
menuitem: About
dockitem: toolbarl
toolitem: NewButton
toolitem: OpenButton

The important things to note here are:

« New nodes are appended to the end of their parent node. This will often result in different merged menus if
you perform the merge in a different order. In practise, this isn't much of a problem, since most apps have a
base menu layout and then want to merge something on top.

« Placeholders are another type of container. They are used in cases where simply appending menu items does
not give the desired layout. For the purposes of menu merging, placeholders are treated as submenus, except
that the child nodes are displayed inside the placeholder’s parent.

Demerging Ul Files

Demerging is a simpler process than merging. While merging, each nodekgdhenuMerge object is tagged
with the Ul files that it was referenced by. The demerge process goes something like this:

1. All nodes in the tree are iterated over, and if they are tagged by the target Ul file, then that tag is removed.

2.1f a node is no longer tagged by any Ul files, or the action name it uses changes, then the node is marked as
dirty.

An idle is queued to do the final cleanup. For any node that is no longer referenced by any Ul file, the
corresponding widget is destroyed, and the node is deleted. For nodes that have changed their action, the widget
is updated to reflect the change.

An idle function is used to reduce the number of changes when the application removes one Ul file and adds
another one to the user interface.

The Future

There is still work to be done dBggMenu Some developers are experimenting with the code in larger applications
(such as Mr Project), which will helped highlight portions of the API that need work.

Another feature that has been requested but not yet implemented is the ability to dynamically add a menu item
to the user interface without having to generate an XML string (which is what Bonobo requires you to do). The
proposed method of handling this is:

1.Call an API to create a merge "tag". This tag would be similar to the ones created when loading a Ul file, and
could be used to demerge the created menu items later.

2.Call an function that creates a named node using a particular action, referenced by the previously created tag.

This provides a convenient API for creating dynamic entries, while allowing them to be handled the same as any
other Ul file (for the purposes of merging, demerging, etc).

EggMenuwill also need to go through the GEP standardisation process as part of consideration for inclusion in
GTK 2.4.

Related Links

Source code http://cvs.gnome.org/Ixr/source/libegg/libegg/menu/

GEP List http://developer.gnome.org/gep/list.html

http://cvs.gnome.org/lxr/source/libegg/libegg/menu/
http://developer.gnome.org/gep/list.html

