Linux Early Userspace

initramfs, klibc, and...
putting things where they belong

H. Peter Anvin
Transmeta Corporation

Cast of Characters

e Al Viro (initramfs)

 H. Peter Anvin (klibc, protocol)

* Russell King (porting to klibc)

e Jeft Garzik (integrating with kernel build)

Linux 0.01 (1991)

* The root filesystem was mounted by the kernel,
using a device number patched into the kernel
binary via compile-time choice or hex editor (the
rdev tool eventually replaces the hex editor for
patching your kernel.)

* Root filesystem on disk. Period.

* “Linux is user friendly. It's just selective as to
who its friends are.”

Linux 0.9x (1992-1993)

e Kernel command line 1s added.

* root= command line option allows the root
device to be set dynamically.

* Root device still on disk only.

* 0.98.3 (1992) — root= by number only.
0.99.11 (1993) — root = by name.

e The kernel now needs a device name to number
mapping, which normally is provided by /dev.

Linux 1.3.42 (1995)

* Allow the root filesystem to reside on NFS.

* This means the kernel has to be able to configure
T'CP/IP networking, including the ability to talk
RARP, BOOTP or DHCP.

Linux 1.3.73 (1996)

e Initial ramdisk (initrd) mechanism introduced
to let userspace deal with complex dependencies.

e Unfortunately, it still requires the initrd to specity
a device number for the root device (what about
network filesystems?)

* The ramdisk code introduces a number of painful
special cases in the buffer cache code.

* A filesystem image is hard to build on the fly.

Linux 2.3.41 (2000)

pivot_root () system call allows an initrd to

play all kinds of games to gets its root filesystem
mounted.

... but pivot_root() has a bunch of odd special-
case semantics, due to kernel threads starting up
with the initrd as root.

We'd like kernel threads to have no root, but that
introduces special cases all over the place...

We would like to...

* Eliminate special cases where possible.

* Replace kernel code with user space code...

— Less likely to cause problems
— Easier to write

— Easier to customize

* Avoid problems like the initrd/kernel thread issue.

Linux 2.4.11 (2001)

* Introduce rootfs, a simple virtual filesystem using
the ramfs code.

- This makes ramfs mandatory, but it's very little code.
In fact, making 1t mandatory lets filesystems like
procts use its code instead of adding its own.

* When the kernel starts, / 1s always rootfs. The
“real” root 1s stmply overmounted on top of the
rootfs.

e Kernel threads start with / being rootfs.

Linux 2.4 (2001-2002)

* Change as much initialization code as we can to
use standard system calls. Most standard system
calls can be run from within the kernel once we
have a root filesystem, and with rootfs, that can
be very early.

* ... butit's still running in the kernel, which means
kernel programming rules apply, and that
mistakes stay around forever.

Linux 2.5 (2002-2003)

* Replace 1nitrd with initramfs, which simply
decodes a cpio archive of files onto the rootfs.

* This archive can be pregenerated, synthesized at
boot time, or both. Multiple archives can be

combined. We will probably allow it to be linked
with the kernel.

e We should be able to remove 1nitialization code

from the kernel, and build a standard initramfs
image.

klibc

* We need a lightweight C library that still provides
a familiar development model.

— glibc 1s overkill...

e klibc 1s < 20K as a shared 1386 binary, and
provides most basic C functionality and system
calls. Some minimal porting is typically required.

e Shared, but not dynamic. Upgrading klibc
requires a relink (and quite possibly a recompile.)

mnitramfs

* One or more cpio archives, possibly compressed,
are archived onto the rootfs.

* Allows even a simple boot loader to construct
images on the fly.

- E.g. frequently requested: network boot loaders
should save away all DHCP information...

* Open question: use a different ramis? Makes
garbage collection easier (unmount and it's gone.)

Writing early userspace code

* It's userspace. Normal C rules apply, however...
e Keep i1t small.

— Make it possible to compile out features.

* Avoid external file dependencies.

* Line-oriented stdio input is very slow.
— This can be fixed, but adds complexity and code size.

* KLIBC__ _define makes it possible to write
dual-mode code.

Candidates for moving to userspace

e Partition, RAID, and logical volume detection
* Detecting the root filesystem type

* nfsroot, including IP autoconfiguration

- RARP, BOOTP, DHCP client
— 1pc to talk to the NFS mount daemon

* Replace kernel command-line handling?

— The kernel command line 1s frequently too short for
all the configuration information we'd like to pass

Current status (Jan 2003)

¢ 1nitramfs

- complete, integrated

- not yet extensively tested, but seems to work
e klibc

— basically complete
- new features added on a demand basis
— not yet ported to all architectures

— not yet integrated

Current status (Jan 2003)

e User-space utilities

— A number of utilities have been ported to or written
for klibc, including the ash shell (55K static 1386)

— Ported tools are currently distributed with klibc
* Integration with kernel build

— Necessary to allow tight coupling with kernel
— In progress (Jeff Garzik)

— Currently builds a basic initramfs, but not klibc

