
Putting a filesystem into a device driver

Greg Kroah-Hartman ∗

IBM Corp.

greg@kroah.com or gregkh@us.ibm.com

Abstract

For a while there was a freeze on assigning new ma-
jor and minor numbers in the kernel, so developers
had to use a different way to have a device driver
interact with userspace. One of the ways this can
be done is by embedding a filesystem into the device
driver. This paper will show how this can be easily
done for both the 2.4 and 2.5 kernel trees.

It will cover what the basic requirements for a
filesystem are, how to create the internal kernel
structures and register them properly, and how to
create a filesystem that is contained within a re-
movable module. Where possible it will highlight
the differences between the 2.4 and 2.5 kernel ver-
sions of the VFS layer, and how it can help do the
main work for the driver. For drivers that only need
to be in 2.5 and beyond, the sysfs filesystem will
be discussed as an alternative to creating a separate
filesystem.

1 Introduction

On May 14, 2001, H. Peter Anvin announced to the
linux-kernel mailing list:

Linus Torvalds has requested a morato-
rium on new device number assignments.
His hope is that a new and better method
for device space handing will emerge as a
result.

Peter is the ”Linux Assigned Names and Numbers
Authority”. This means that all kernel driver au-
thors had to go through him to get a major and

∗This work represents the view of the author and does not

necessarily represent the view of IBM.

minor number pair for their drivers. With this an-
nouncement, a freeze was made on assigning new
numbers. Naturally this caused a lot of discussion
on what this ”better method” for device space han-
dling would be. One viewpoint that emerged from
the discussion was the fact that a driver could im-
plement a filesystem to control the user space inter-
action with the driver.

2 pcihpfs

During this time, the PCI Hotplug driver that
was written by Compaq for their servers was being
cleaned up for submission to the main kernel tree.
A PCI Hotplug driver allows the user to shutdown a
PCI card while the machine is running, pull it out,
replace it with another one, and then power that
card back on, if the proper PCI controller hardware
is present. This is very useful for servers that can
not be shut down, but need to have new network
cards added, faulty devices removed, and other ser-
vice type operations.

The PCI Hotplug driver was originally written to
interact with user space through a single character
device node. ioctl(2) calls were made to the device
node to shutdown PCI slots, power up PCI slots,
turn PCI slot indicator lights on and off, and to run
different manufacturing tests on the device. To get
information about the number of different PCI slots
in the system, and the state of the slots (power and
indicator status), a /proc directory tree was used.
This directory tree was read only.

As work progressed splitting the PCI Hotplug core
functionality out of the Compaq driver, so that
other PCI Hotplug drivers would have a common
interface to the user, it was determined that a single
filesystem would be a better fit to both show PCI
slot information, and to allow user control of the
slots. All information and control over the driver

would be made from one place, instead of having
two different types of interfaces.

The PCI Hotplug driver core has been merged into
the main kernel tree as of 2.4.15, and it exports a
filesystem called pcihpfs that is used to control the
driver. When the filesystem is mounted, tradition-
ally at /proc/bus/pci/slots, a tree is created that
looks something like the following:

.

|-- slot3

| |-- adapter

| |-- attention

| |-- latch

| |-- power

| ‘-- test

|-- slot4

| |-- adapter

| |-- attention

| |-- latch

| |-- power

| ‘-- test

|-- slot5

| |-- adapter

| |-- attention

| |-- latch

| |-- power

| ‘-- test

‘-- slot6

|-- adapter

|-- attention

|-- latch

|-- power

‘-- test

The directories called 3, 4, 5, and so on, are the
physical numbers of the PCI slots. Every file in a
slot directory can be read to get the value for that
bit of information about the slot. The files power

and attention can be written to set the power (0 or
1) or attention (0 or 1) values. The test file is used
to send hardware test commands to the hardware.
The adapter file describes if an adapter is present
in that slot or not, and the ”latch” file describes the
position of the physical latch (if any) for that slot.

So the power in slot 5 can be enabled by running:

echo 1 > 5/power

from the pcihpfs root. If a PCI card is present
in that slot, the whole PCI initialization sequence
will happen for that card, including calling out to

/sbin/hotplug with the PCI info so that the mod-
ule for that device can be automatically loaded by
the system.

Because of this filesystem, a user space program
does not have to make special ioctl() calls to a
character device, enabling users to have a wider
range of options for how they want to control their
devices.

3 Creating a filesystem

A filesystem must be declared within the driver. To
do this, create a struct file system type
variable, and fill in some of the fields.
An example of this can be found in the
drivers/hotplug/pci hotplug core.c file:

static struct file_system_type pcihpfs_type = {

.owner = THIS_MODULE,

.name = "pcihpfs",

.get_sb = pcihpfs_get_sb,

.kill_sb = kill_litter_super,

};

The name field is set to pcihpfs which will be used
by users in mounting the filesystem (so choose a
name that makes sense, and is not currently in use
by any other filesystem in the kernel.) By setting
the kill sb function pointer to kill litter super

the driver specifies that it wants the filesystem to
keep the tree in the dcache. This is because the
filesystem will live completely in ram, and will not
have a backing store of the data on any physical
device (like a disk).

The get sb field of the pcihpfs fs type points to
the function that will be called when the kernel
wants to read the superblock of the filesystem. A
superblock is the structure in a filesystem that is
used to describe the entire filesystem. The kernel
will call this function when the filesystem is asked
to be mounted. When this function is called, the
kernel needs to be told exactly what the filesystem
looks like.

But before the filesystem can be mounted, the
driver needs to tell the kernel that the filesys-
tem is present. This is done with a sim-
ple call to register filesystem() with the
file system type as the only parameter. This

is done in the pci hotplug module’s initialization
function with the following bit of code:

result = register_filesystem(&pcihpfs_fs_type);

if (result) {

err("register_filesystem failed with"

" %d\n", result);

goto exit;

}

Likewise, when the pci hotplug module is being
shutdown, the filesystem type is unregistered with
the following single line of code:

unregister_filesystem(&pcihpfs_fs_type);

For the 2.4 kernel, declaring a filesystem is done a
bit differently. The DECLARE FSTYPE macro is used
instead of creating the struct file system type
variable directly:

static DECLARE_FSTYPE(pcihpfs_fs_type,

"pcihpfs",

pcihpfs_read_super,

FS_SINGLE | FS_LITTER);

The FS SINGLE flag means that for this filesystem,
there will only be one instance of the superblock.
This means that wherever the filesystem is mounted
in the system, all mount points will point to the
same location in the filesystem (the same filesys-
tem can be mounted at different points in the di-
rectory tree at the same time.) If this is not spec-
ified, every time the filesystem is mounted, a new
superblock is created, requiring all of the virtual
files to be recreated. Most drivers that imple-
ment filesystems want the single instance of the su-
perblock. For 2.5 this flag is not specified in the
struct file system type variable, but it is spec-
ified within the function that is called to get the
superblock of the filesystem.

The FS LITTER option means the same as the
kill litter super function being set in the 2.5
kernel.

4 Mounting the filesystem

After the filesystem is registered, the driver can cre-
ate some virtual files that will be used by a user

to read and write values to the driver. If a user
mounts the filesystem, before the driver creates a
file, the kernel will have already created the filesys-
tem at some virtual location. If the filesystem has
not been mounted by a user, the driver has to get
the kernel to mount the filesystem internally before
it can create a file. There are three ways to do this.

The first, and easiest method, is to call
kern mount() right after register filesystem()

is called. This mounts the kernel internally, and al-
lows files to be created and removed from that point
on. The main disadvantage of this method is that
the module that implemented the filesystem can not
be unloaded until the internal mount is unmounted,
effectively locking the module and filesystem into
memory forever. For filesystems that are not meant
to be unloaded, this is acceptable. An example of
this is the sysfs filesystem in the 2.5 kernel.

The second method is to wait until the filesystem
is really mounted and then create all of the needed
files. The get sb function is called by the kernel
when the filesystem is mounted, so at that moment
the driver could create the files. (For 2.4, it’s when
the read super function is called.) To do this prop-
erly, it would require a lot of work to be done at
mount time, and to constantly be aware of if the
filesystem is currently mounted or not. This can be
a big problem if files need to be added or removed at
different points in time (like when devices are added
or removed from the system.) The usbfs filesystem
in the 2.2 and 2.4 kernels is an example of a virtual
filesystem that implements operates this way.

But if the filesystem is required to live in a module
that can be unloaded from memory, and the num-
ber of different files that need to be created or re-
moved is too difficult to keep track of, there is a third
method that can be used. This involves telling the
kernel to internally mount the filesystem, but still
allow it to be unmounted at a later time. The code
in Figure ?? shows how to accomplish this.

This code is also a good example of how to do proper
locking techniques for when the kernel is running on
a multiple processor machine.

First the spin lock, mount lock is grabbed with the
line:

spin_lock(\&mount_lock);

static int get_mount (struct file_system_type *fs_type, struct vfsmount **mount, int *mount_count)

{

struct vfsmount *mnt;

spin_lock (&mount_lock);

if (*mount) {

mntget(*mount);

++(*mount_count);

spin_unlock (&mount_lock);

goto go_ahead;

}

spin_unlock (&mount_lock);

mnt = kern_mount (fs_type);

if (IS_ERR(mnt)) {

err ("could not mount the fs...erroring out!\n");

return -ENODEV;

}

spin_lock (&mount_lock);

if (!*mount) {

*mount = mnt;

++(*mount_count);

spin_unlock (&mount_lock);

goto go_ahead;

}

mntget(*mount);

++(*mount_count);

spin_unlock (&mount_lock);

mntput(mnt);

go_ahead:

dbg("mount_count = %d", *mount_count);

return 0;

}

Figure 1: get mount from drivers/usb/core/inode.c

This lock is used to protect the internal count of
how many times the filesystem has been mounted.
Previously it was stated that it would not be neces-
sary to keep track of if the filesystem was mounted
or not. This simple function, combined with a sim-
ple function to unmount the filesystem described
later, is much easier to understand and work with,
than the option of trying to determine if it has
been mounted by a user or not. See the code in
drivers/usb/inode.c in the 2.4.18 and earlier ker-
nels for an example of what is needed to do this
properly.

After mount lock has been grabbed, the internal
mount variable is checked:

if (*mount) {

mntget(*mount);

++(*mount_count);

spin_unlock (&mount_lock);

goto go_ahead;

}

If it has been set, the code calls mntget()

to increment the internal mount count variable
(mntget() is a simple inline function in the
include/linux/mount.h file). The the internal
count variable is incremented, the mount lock is
unlocked, and the function exits by jumping to the
go ahead label.

If this filesystem has not been mounted, more work
needs to occur. The mount lock is unlocked:

spin_unlock (&mount_lock);

and kern mount is called to mount the filesystem

internally:

mnt = kern_mount (fs_type);

if (IS_ERR(mnt)) {

err ("could not mount the fs..."

"erroring out!\n");

return -ENODEV;

}

The mount lock is unlocked because the
kern mount() function can possibly take a
long time and even cause the kernel to sleep and
schedule another process. A spin lock can not be
held if schedule() can be called while the lock
is held. If this happens, the kernel could easily
deadlock.

After the filesystem has been mounted, mount lock
is grabbed again:

spin_lock (&mount_lock);

and then the internal mount variable is checked
again to determine if it is still zero:

if (!*mount) {

*mount = mnt;

++(*mount_count);

spin_unlock (&mount_lock);

goto go_ahead;

}

Why should the variable be checked again, as it was
just checked a few lines ago? This is done because
the call to kern mount() that was previously called
could sleep. If that happened, another process could
come through this same piece of code and the filesys-
tem could have already been successfully mounted.
This is why the variable must be checked again.

If another process has not come through and
mounted the filesystem, the pointer to the now
mounted filesystem is saved off for other functions
to later use, the internal counter is incremented,
mount lock is unlocked, and the function exits.

But if another process has already mounted the
filesystem, the code does:

mntget(*mount);

++(*mount_count);

spin_unlock (&mount_lock);

mntput(mnt);

which matches what was originally done in the same
situation, back up at the beginning of the function.

The code to unmount the filesystem is much simpler,
and can be seen in Figure ??. In this function, the
mount lock is grabbed (this is the same lock used
when mounting the filesystem). Then the count of
the number of times the filesystem was mounted is
decremented. Because of this, the put mount needs
to be called as many times as get mount is called.
After this, the mount lock is unlocked, and the ker-
nel is told to unmount the filesystem with a call to
mntput().

The code for get mount and put mount will work
properly for both the 2.4 and 2.5 kernels.

5 Creating the superblock

When the kernel wants to mount the filesystem, vir-
tually due to a call to kern mount(), or because a
user mounted it first, the superblock get function
is called by the VFS core. For 2.5 kernels, this is
the get sb callback, and for the 2.4 kernel, it is the
function specified in the DECLARE FSTYPE macro.

A superblock is an object needed by the kernel VFS
(virtual file system layer) that describes a mounted
filesystem. If a filesystem is based on a disk, this
usually corresponds to data stored on the disk in
a filesystem control block. For a virtual filesystem,
this information must be created based on the in-
formation that the driver wants to place into the
filesystem.

For the pcihpfs code in the 2.5 kernel, the get sb
callback is a very simple function:

static struct super_block *pcihpfs_get_sb (

struct file_system_type *fs_type,

int flags, char *dev_name, void *data)

{

return get_sb_single(fs_type,

flags,

data,

pcihpfs_fill_super);

}

The call to get sb single() tells the VFS layer
that the driver wants a single instance of this filesys-
tem in memory, exactly like the FS SINGLE flag in

static void put_mount (struct vfsmount **mount, int *mount_count)

{

struct vfsmount *mnt;

spin_lock (&mount_lock);

mnt = *mount;

--(*mount_count);

if (!(*mount_count))

*mount = NULL;

spin_unlock (&mount_lock);

mntput(mnt);

dbg("mount_count = %d", *mount_count);

}

Figure 2: put mount from drivers/usb/core/inode.c

the 2.4 DEVCLARE FSTYPE macro stated.

The pcihpfs fill super function is where all of
the superblock information for the filesystem is cre-
ated. This includes information describing what the
filesystem looks like and where to find the functions
that the kernel will later call during the lifetime of
the filesystem. This is done with the following lines
of code:

sb->s_blocksize = PAGE_CACHE_SIZE;

sb->s_blocksize_bits = PAGE_CACHE_SHIFT;

sb->s_magic = PCIHPFS_MAGIC;

sb->s_op = &pcihpfs_ops;

This code specifies that the filesystem’s block size
is equal to the page cache size. The filesystem’s
magic number is also set up. This number must
be unique across all filesystems in the kernel. The
pointer to the list of struct super operations is
also specified.

Then the superblock’s root inode is initialized:

inode = pcihpfs_get_inode(sb,

S_IFDIR | 0755,

0);

if (!inode) {

dbg("%s: could not get inode!\n",

__FUNCTION__);

return -ENOMEM;

}

pcihpfs get inode() will be described down be-
low. If that function succeeds, the root dentry for
the inode that was created is allocated, and that
dentry is saved into the superblock structure:

root = d_alloc_root(inode);

if (!root) {

dbg("%s: could not get root dentry!\n",

__FUNCTION__);

iput(inode);

return -ENOMEM;

}

sb->s_root = root;

This completes everything that is needed to initial-
ize the superblock structure, and now the kernel has
successfully mounted the filesystem.

6 Creating inodes

The kernel VFS works based on a inode structure.
An inode stores general information about a specific
file. For a disk based filesystem, an inode would usu-
ally correspond to a specific file control block that
would be stored on a disk. For a virtual filesystem,
it refers to a specific file.

Inodes are created by the filesystem when asked
to. The pcihpfs file system does this in the
pcihpfs get inode() function. filesystem. This
function is shown in Figure ??.

The pcihpfs get inode function first calls the ker-
nel’s new inode() function to have a new inode
structure initialized and created. If this succeeds,
the function proceeds to fill up a number of the in-
ode structure’s fields with needed information. The
i uid and i gid members are set to the current pro-
cess’s uid and gid values. This insures that whoever

static struct inode *pcihpfs_get_inode (struct super_block *sb, int mode, dev_t dev)

{

struct inode *inode = new_inode(sb);

if (inode) {

inode->i_mode = mode;

inode->i_uid = current->fsuid;

inode->i_gid = current->fsgid;

inode->i_blksize = PAGE_CACHE_SIZE;

inode->i_blocks = 0;

inode->i_rdev = NODEV;

inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;

switch (mode & S_IFMT) {

default:

init_special_inode(inode, mode, dev);

break;

case S_IFREG:

inode->i_fop = &default_file_operations;

break;

case S_IFDIR:

inode->i_op = &pcihpfs_dir_inode_operations;

inode->i_fop = &simple_dir_operations;

/* directory inodes start off with i_nlink == 2 (for "." entry) */

inode->i_nlink++;

break;

}

}

return inode;

}

Figure 3: pcihpfs get inode from drivers/hotplug/pci hotplug core.c

has the permission to create the inode, can later ac-
cess it. The i atime, i mtime, and i ctime mem-
bers refer to the inode’s access time, last modified
time, and time of last change for the file. These
are all set to the current time. If this inode is a
”regular” file type, then the set of functions that
should be called whenever the inode is acted upon
(for open, write, read, etc.) is set to point to the
default file operations structure. If this inode
is a directory inode, the file operations is pointed
to a default set of directory inode functions. And
if the inode is neither a ”regular” inode, or a direc-
tory inode, then the kernel initializes it with a call
to init special inode().

7 Creating virtual files

Now that the filesystem is internally mounted, vir-
tual files can be created. To do this, a number

of different options for a file must be determined.
The fs create file() function shown in Figure ??

shows all of the different parameters needed.

fs create file expects the following parameters:

• the name of the file

• the permission (mode) of the file

• the parent directory for the file (if this is NULL,
then the file is created in the root directory of
the filesystem)

• a pointer to a blob of data that will be assigned
to this file

• a pointer to a struct file operations that
will be used for this file

• and the user and group ids for the file.

The function takes the name, mode, and par-
ent, and calls the fs create by name() function

static struct dentry *fs_create_file (const char *name, mode_t mode,

struct dentry *parent, void *data,

struct file_operations *fops,

uid_t uid, gid_t gid)

{

struct dentry *dentry;

int error;

dbg("creating file ’%s’",name);

error = fs_create_by_name (name, mode, parent, &dentry);

if (error) {

dentry = NULL;

} else {

if (dentry->d_inode) {

if (data)

dentry->d_inode->u.generic_ip = data;

if (fops)

dentry->d_inode->i_fop = fops;

dentry->d_inode->i_uid = uid;

dentry->d_inode->i_gid = gid;

}

}

return dentry;

}

Figure 4: fs create file from drivers/usb/core/inode.c

which is shown in Figure ??. This function cre-
ates a dentry for the file by calling the kernel func-
tion get dentry(), and depending on the type of
file being created (a file or a directory), either
the usbfs mkdir() or usbfs create() function is
called. The ”normal” VFS functions, vfs mkdir()

and vfs create() are not used. If the VFS func-
tions are used, users can create and later delete files,
which can lead to confusion, if that is not desired
by the filesystem author.

The struct file operations that is needed to
create a file, contains the functions that will be
called when a user accesses the file. If reading
data from the file is all that is desired, then a
very simple set of file operations can be speci-
fied, as shown by the following code from the
drivers/pci/hotplug/pci hotplug core.c file:

/* file ops for the "power" files */

static struct file_operations

power_file_operations = {

.read = power_read_file,

.write = power_write_file,

.open = default_open,

.llseek = generic_file_llseek,

};

The generic file llseek() function lives within
the kernel, and provides a default llseek functional-
ity. The default open() function is defined within
the driver file as this simple bit of code:

static int default_open (

struct inode *inode, struct file *file)

{

if (inode->u.generic_ip)

file->private_data =

inode->u.generic_ip;

return 0;

}

This function sets up the file’s private data
pointer to point to the inode generic data pointer,
which was originally the data blob passed to the
fs create file() function. This allows the read
and write functions to know what type of device
this file is being called for.

The power read file() and power write file()
functions are called whenever the file is read from
or written to. These are also not very compli-
cated functions. For the power read file() func-
tion, the data to return to the user is the current

static int fs_create_by_name (const char *name, mode_t mode,

struct dentry *parent, struct dentry **dentry)

{

int error = 0;

/* If the parent is not specified, we create it in the root.

* We need the root dentry to do this, which is in the super

* block. A pointer to that is in the struct vfsmount that we

* have around.

*/

if (!parent) {

if (usbfs_mount && usbfs_mount->mnt_sb) {

parent = usbfs_mount->mnt_sb->s_root;

}

}

if (!parent) {

dbg("Ah! can not find a parent!");

return -EFAULT;

}

*dentry = NULL;

down(&parent->d_inode->i_sem);

*dentry = get_dentry (parent, name);

if (!IS_ERR(dentry)) {

if ((mode & S_IFMT) == S_IFDIR)

error = usbfs_mkdir (parent->d_inode, *dentry, mode);

else

error = usbfs_create (parent->d_inode, *dentry, mode);

} else

error = PTR_ERR(dentry);

up(&parent->d_inode->i_sem);

return error;

}

Figure 5: fs create by name from drivers/usb/core/inode.c

power status of a specific PCI slot. The code to do
this can be seen in Figure ??. The function allo-
cates a chunk of memory (one page), gets the power
status of a specific PCI slot (through the call to
get power status(), and then writes to the chunk
of memory, a string representation of this status.
The chunk of memory is then copied into user space.
This is necessary as the original memory memory is
located in kernel space, and needs to be copied to
user space into the buffer passed from the user to the
read(2) call. So when a user issues the command:

cat /proc/bus/pci/slots/slot2/power

the result is:

1

The power write file() function is just as simple
and can be seen in Figure ??. With this function
the user is able to control the power of the pci slot
with a simpleecho(1) command like:

echo 1 > /proc/bus/pci/slots/slot3/power

to turn on the power to the third PCI slot in the
system.

With those two simple functions, a user can inter-
act with a driver without making special ioctl(2)
calls.

8 Shutting down

When the driver shuts down it must remove all
of the files that it had originally created in the
filesystem, in order to be allowed to unmount
the filesystem, and free up all of the allocated
memory. An example of how to do this can
be seen in the fs remove file() function in the
drivers/usb/core/inode.c file:

static void fs_remove_file (struct dentry *dentry)

{

struct dentry *parent = dentry->d_parent;

if (!parent || !parent->d_inode)

return;

down(&parent->d_inode->i_sem);

if (usbfs_positive(dentry)) {

if (dentry->d_inode) {

if (S_ISDIR(dentry->d_inode->i_mode))

usbfs_rmdir(parent->d_inode,

dentry);

else

usbfs_unlink(parent->d_inode,

dentry);

dput(dentry);

}

}

up(&parent->d_inode->i_sem);

}

This function needs a pointer to the dentry that
the call to fs create file() returned. It deter-
mines if the dentry has a valid parent as the parent
of the dentry is required in order to be able to re-
move it. Then it calls either the usbfs rmdir()

or usbfs unlink() functions to remove the file, de-
pending on if the file is a directory or a not. Again,
if the normal VFS layer functions vfs rmdir() and
vfs unlink() were used, then any user with the
proper permissions would be able to remove any
file in the filesystem, which is not what is usually
wanted.

9 sysfs

With the above functions, it is simple to create a
filesystem that can be included within a driver. But
if a driver only wants to export a few files, and the
overhead of a separate filesystem is too great, the

sysfs filesystem should be used. This filesystem
provides a external view of a large majority of all
of the kernel’s data structures and the relationships
between them. It is much easier to use sysfs than
it is to create a separate filesystem.

For more information on how to use sysfs, please
see the Documentation/filesystems/sysfs.txt

file in the kernel tree, and Pat Mochel’s paper and
presentation at the Linux.conf.au 2003 conference.

10 Acknowledgments

I would like to thank Pat Mochel for writing the
ddfs/driverfs/sysfs code, upon which a lot of
the pcihpfs and usbfs code was originally based.

I would also like to thank Al Viro for answering
a lot of VFS related questions, and for enabling a
filesystem to be written with such a small amount
of code.

static ssize_t power_read_file (struct file *file, char *buf, size_t count, loff_t *offset)

{

struct hotplug_slot *slot = file->private_data;

unsigned char *page;

int retval;

int len;

u8 value;

dbg(" count = %d, offset = %lld\n", count, *offset);

if (*offset < 0)

return -EINVAL;

if (count <= 0)

return 0;

if (*offset != 0)

return 0;

if (slot == NULL) {

dbg("slot == NULL???\n");

return -ENODEV;

}

page = (unsigned char *)__get_free_page(GFP_KERNEL);

if (!page)

return -ENOMEM;

retval = get_power_status (slot, &value);

if (retval)

goto exit;

len = sprintf (page, "%d\n", value);

if (copy_to_user (buf, page, len)) {

retval = -EFAULT;

goto exit;

}

*offset += len;

retval = len;

exit:

free_page((unsigned long)page);

return retval;

}

Figure 6: power read file from drivers/hotplug/pci hotplug core.c

static ssize_t power_write_file (struct file *file, const char *ubuff, size_t count, loff_t *offset)

{

struct hotplug_slot *slot = file->private_data;

char *buff;

unsigned long lpower;

u8 power;

int retval = 0;

if (*offset < 0)

return -EINVAL;

if (count == 0 || count > 16384)

return 0;

if (*offset != 0)

return 0;

if (slot == NULL) {

dbg("slot == NULL???\n");

return -ENODEV;

}

buff = kmalloc (count + 1, GFP_KERNEL);

if (!buff)

return -ENOMEM;

memset (buff, 0x00, count + 1);

if (copy_from_user ((void *)buff, (void *)ubuff, count)) {

retval = -EFAULT;

goto exit;

}

lpower = simple_strtoul (buff, NULL, 10);

power = (u8)(lpower & 0xff);

dbg ("power = %d\n", power);

if (!try_module_get(slot->ops->owner)) {

retval = -ENODEV;

goto exit;

}

switch (power) {

case 0:

if (!slot->ops->disable_slot)

break;

retval = slot->ops->disable_slot(slot);

break;

case 1:

if (!slot->ops->enable_slot)

break;

retval = slot->ops->enable_slot(slot);

break;

default:

err ("Illegal value specified for power\n");

retval = -EINVAL;

}

module_put(slot->ops->owner);

exit:

kfree (buff);

if (retval)

return retval;

return count;

}

Figure 7: power write file from drivers/hotplug/pci hotplug core.c

