bewdy, Maaate!

Silvia Pfeiffer and Conrad Parker
CSIRO Mathematical and Information Sciences
Locked Bag 17, North Ryde NSW 1670, Australia

{Silvia.Pfeiffer,Conrad.Parker } @cmis.csiro.au

ABSTRACT

With the vast amount of multimedia data online, content-
based access to multimedia files becomes more and more in-
teresting to users. One type of multimedia files widely used
nowadays are MPEG-encoded audio files (MPEG-1 layers
1, 2, 3 (MP3)). MPEG Maaate is an audio analysis toolkit
that supports the extraction of structure and content of such
audio files.

bewdy is a graphical interface to easily play around with
the analysis modules of MPEG Maaate and create content
and structural information for MPEG-encoded audio files.
It is thus also an application example for the MPEG Maaate
libraries.

MPEG Maaate has has been published under the GNU GPL
and can be found under
http://www.cmis.csiro.au/dmis/Maaate/.

1. INTRODUCTION

Audio content analysis is a very active research area within
the multimedia content analysis community. It is especially
interesting with respect to new multimedia applications such
as new services in the digital TV area, and searching for
sounds in the Internet. The tools we present in this paper
support research into algorithms that are required for such
applications.

The tools operate on MPEG-encoded audio files for several
reasons. Firstly, many audio files are compressed in MPEG
format. Currently, MP3 (MPEG-1 encoded audio files in
Layer 3) is the de-facto standard format for audio files on
the Internet. MPEG-encoded videos also contain MPEG-
compressed audio. However the MPEG-compressed format
is not only popular on the Internet: it is also used within dig-
ital video cameras, within radio stations for digital archiving
purposes, and is envisaged as the format for future digital
TV broadcasts.

Secondly, most audio content information is only accessible
in the frequency domain. Analysis of audio content is usu-
ally a time consuming task as the data must first be trans-
formed into this domain. However the MPEG compression
algorithms do this during encoding and compress the sub-
band information [5, 6, 3, 2]. It is therefore possible to
perform audio analysis on MPEG audio files without decod-
ing, and faster algorithms are possible than for the analysis
of raw audio data. The only drawback is that analysis al-

gorithms are restricted to the frequency resolution provided
by the encoding algorithm.

A further advantage of performing analysis in the MPEG
compressed domain is that some inaudible sounds contained
in the raw audio have already been removed during encoding
by the application of a psychoacoustic model. Thus mainly
sounds within human perception remain, providing a cleaner
information source for content analysis than was available
using the original audio recording.

The tools that are presented in this paper provide libraries
to directly access the encoded fields of MPEG audio files and
perform content analysis in the compressed domain (MPEG
Maaate) and a graphical interface (bewdy) to parameterise
and visualise the results of analyses.

MPEG Maaate’s architecture enables integration of differ-
ent content analysis algorithms for MPEG-encoded audio
files. Our own algorithms for loudness approximation [8],
background noise level calculation, generic segmentation of
1D-data [8], and generic histograms are currently available
as a plugin library. The segmentation module may e.g. be
used to detect silent or noisy segments based on the energy,
or to segment sound scenes based on the background energy.
The histogram module allows to calculate quantized distri-
butions of features such as the energy. MPEG Maaate is
designed such that inclusion of further analysis algorithms
such as have been published in [1, 4, 7] is simple.

The paper is set up as follows: Section 2 presents the archi-
tecture of MPEG Maaate, Section 3 describes in detail the
plugin module interface, and Section 4 presents the GUIL
The paper is concluded in Section 5 with an outlook on fu-
ture work.

2. MPEG MAAATE OVERVIEW
MPEG Maaate is implemented in C++ using the standard
template library. It consists of two tiers, both of which are
a library with a C++ and a C APL. It is designed in tiers in
order to separate different functionalities and provide simple
application programming interfaces (APIs):

e tier 1 implements the parsing of an MPEG audio
stream and provides convenience functions to access
the fields encoded in an MPEG audio frame. The
relevant class that contains the API for tier 1 is the
MPEGHfile class.

Header
access
MPEGfile AllLayers
Layerl Layer2 Layer3

Figure 1: Classes diagram of MPEG Maaate parser
in OMT

e tier 2 provides two generic data containers as utilities
for analysis modules. In addition, it provides a module
interface to plugin analysis routines which are stored in
dynamically loaded libraries and loaded as requested
by an application. The classes that provide the data
containers are the SegmentData and the Segment-
Table classes. The plugin module API is provided by
the Plugins class.

2.1 Designoftier 1

Tier 1, the parsing tier, consists of seven classes altogether:

e MPEGfile: contains the API to open an MPEG audio
file and process the audio frames (MPEGfile is derived
from Header and thus also contains all header field
access functions).

e Header: contains code to parse and access MPEG au-
dio frame headers.

e AllLayers: contains code that all three layers require
for parsing one MPEG audio frame. This class is an
abstract class as no instances of it may be created but
only of its subclasses Layerl-Layer3.

e Layerl-Layer3: are subclasses of AllLayers and contain
Layer1/2/3-specific code. They are only supportive
classes for the MPEGtfile class.

e MDecoder: is a convenience class that provides a sim-
ple API to use for playback applications where decod-
ing to PCM into a buffer is required.

All of the API is based on the MPEGfile class. When in-
stantiating an MPEGfile object, it gets tied to an MPEG
audio input file. An MPEG audio file consists of a sequence
of (audio) frames. Each frame has a header which contains
information about the type of data that is encoded in the

frame e.g. MPEG version 1 or 2, layer, bitrate, sampling
frequency, channels. Based on this information, the length
of the data encoded in the frame can be calculated and the
data can be parsed. At the API, one frame at a time may
be parsed and encoded data requested. The encoded data
differs between layers (layers 1 and 2 are similar, layer 3 is
very different).

Here are a few examples of access functions to fields encoded
in an MPEG audio frame:

int bitallocation (unsigned int channel,
unsigned int subband) ;
(unsigned int channel,
unsigned int subband);
(unsigned int channel,
unsigned int subband,
unsigned int subsubband=0);
(unsigned int channel,
unsigned int subband,
unsigned int granule,
unsigned int subsubband=0);
double restored_sample (unsigned int channel,
unsigned int subband,
unsigned int granule,
unsigned int subsubband=0);
(unsigned int channel,
unsigned int subband,
unsigned int granule,
unsigned int subsubband=0) ;

int scfsi

float scalefactor

int sample

short pcm_sample

The following is sample code for using the API of the MPEG
Maaate parser:

// open MPEG audio file
MPEGfile *infile = new MPEGfile(filename) ;

// go thru file frame by frame

while (infile->data_available()) {
infile->parse_frame() ;
infile->printheader() ;

// get scalefactor of first channel,
// first subband and first subsubband
scf = infile->scalefactor(0,0,0);

Such code may be required within analysis modules.

Although the MPEGtile class provides all the necessary API
for tier 1, we have decided to implement another class with
an API to enable simple decoding to PCM samples which is
required mainly for playback applications: the MDecoder
class. An example for using the API of the MDecoder is the
following:

// open MPEG file
MDecoder *dec = new MDecoder(filename);

// open and setup audio device

Plugins
list of loaded Modules Module
SegmentTable
vector of SegmentData
SegmentData

Figure 2: Classes diagram of MPEG Maaate anal-
yser in OMT

/...

// create output buffer
short buffer [BUFFERSIZE] ;
long nr_samples = BUFFERSIZE;

// go through file and play decoded frames as long
// as there are samples available
long frame = 0;
while (nr_samples > 0) {
frame = dec->decode (frame,
buffer,
&nr_samples,
STERED) ;

// play samples
play (buffer, nr_samples);
}

2.2 Designoftier 2

MPEG Maaate tier 2 implements two generic data contain-
ers to support the analysis task and a plugin interface to
dynamically load analysis modules into an application using
MPEG Maaate.

2.2.1 AnalysisData Containes

When analysing MPEG audio data, calculated features of-
ten come in the form of one- or two-dimensional data that
is tied to a specific time range. In addition, the calculation
of temporal segmentations is another type of common anal-
ysis result. We have implemented two data structures that
support the handling of such data:

e SegmentData: contains code to keep content informa-
tion on a segment of the audio file. A segment is a

continuous time range. Example content are a silence
period, which contains no data, just time information,
or an energy curve, which contains 1D data on a seg-
ment of time, namely the energy at specific sampled
intervals.

e SegmentTable: contains code to keep content informa-
tion on a collection of segments of an MPEG audio
file, e.g. all silence periods of a file. The segments are
ordered by starttime and duration.

An example for the usage of these data containers is the
following code:

// open an MPEG audio file
MPEGfile *mf = new MPEGfile(filename) ;

// create a segment and fill it with subband values
SegmentData *result = new SegmentData(startTime,
endTime,
columns,
rows) ;
for (int i=0; i<columms; i++) {
infile->parse_frame();
for (int j=0; j<rows; j++) {
result->datalil [j]1 =
mf->restored_sample (0, j, 0);

}

// copy the segment to a table of segments
SegmentTable *segments = new SegmentTable();
segments—>append (*result);

2.2.2 Plugin Modulelnterface

Modules are routines that provide some analysis function
to an application of MPEG Maaate. They get compiled
separately from the MPEG Maaate libraries and linked into
their own shared library. They are dynamically loaded into
an application, which goes back to MPEG Maaate tier 2 and
tells it to load those libraries that contain the modules it
requires. After loading they are available to the application.

Some advantages of the plugin interface are:

e Modules can be developed and compiled separately
from MPEG Maaate.

e The MPEG Maaate libraries can be extended by anal-
ysis modules without ever having to recompile MPEG
Maaate.

e The boundary between MPEG Maaate code and anal-
ysis module code is explicit. An author of a plugin
module does not have to add any code into MPEG
Maaate for his module to be used with it.

e The separation of MPEG Maaate and the modules
simplifies determination of legal ownership of code.

3. MPEG MAAATE PLUGIN MODULES

3.1 Module specification

3.1.1 Whatis a module?

A module is a collection of functions that provide some aug-
mented functionality on top of MPEG Maaate. Modules
that analyse the content of MPEG audio files usually col-
lect information on several MPEG audio frames and calcu-
late more abstract information from these. Tier 2 was con-
structed for such types of modules. However, other modules
are possible, too.

Examples of modules are

e feature extraction modules such as energy, spectral
centroid or spectral bandwidth modules. Such mod-
ules usually have to make use of the tier 1 field access
functions and store their results in one of the data con-
tainers supplied by tier 2. An example of such a mod-
ule is the sumscf module which can be inspected in the
Maaate source archive under src/plugins/sumscf.cc.

e feature analysis modules that use the extracted fea-
tures for some further (usually statistical) analysis
such as clustering, segmentation or histogram mod-
ules. These modules usually make use of a filled con-
tainer and store their results in another convenience
container. An example of such a module is the segmen-
tation module which can be inspected in the Maaate
source archive under src/plugins/segmentation.cc.

o content analysis modules that calculate higher level in-
formation using feature extraction and analysis mod-
ules such as silence / music / speech determination.
Suchd modules usually call other modules to calculate
their results, which again may be stored in convenience
containers. An example of such a module is the silence
segmentation module which can be inspected in the
Maaate source archive under src/plugins/silences.cc.

A module is an instance of the Module class, which also
provides convenience functions to get information on the
instantiated module, handle input and output parameters,
check constraints on parameters and call the module func-
tions.

3.1.2 Modulefunctions

The apply-function of a module contains the implementation
of the analysis functionality provided to Maaate. It takes
as input a list of parameters and produces as a result of
its processing a list of output parameters. There are other
functions required to set up the environment under which
the apply-function will work. Here is a description of all
functions possibly contained within a module and callable
at the module interface:

e an init-function (required), which sets up the basic
information of the module such as its name, author,
or description, and the input and output parameter
specification.

e a default-function (required), which sets default val-
ues for input parameters and returns the input param-
eter list.

e a suggest-function (optional, recommended), which
takes an input parameter list, suggests parameter val-
ues based on information provided by other parame-
ters, and changes constraints of input parameters as
required.

e areset-function (optional), which provides the possi-
bility to reset a module, e.g. internal processing values
or parameter values.

e an apply-function (required), which takes an input
parameter list, performs its analysis function and re-
turns the calculated output parameters.

e a destroy-function (optional), which cleans up mem-
ory allocated within the module and deletes parameter
specifications.

In addition, a function to construct the module and add it
to the list of available modules must be provided.

3.1.3 Moduleparametes

The apply-function requires input parameters to work on
and produces output parameters that contain its results. A
parameter is an instance of the ModuleParam class. Mod-
ule parameters are handled by an application as follows: The
init-function sets up the list of parameter specifications for
input and output parameters. Thereafter, the application
sets up a concrete input parameter list with default values
by calling the default-function. The application may then
change the input parameter values as it requires. Then it
has the possibility to call the suggest-function which will
take care of setting further parameter values and parame-
ter constraints based upon internal module knowledge and
the provided parameter values. It will also check provided
parameter values for sanity and change them appropriately.

Now, the application may call the apply-function. The first
step within the apply-function is to check parameter values
again for being within constraints (such as acceptable nu-
meric ranges or predefined values). So, if an application has
decided not to use the default- and suggest-functions, this
still ensures that provided parameter values are sane. Con-
straints are hard limits, i.e. the apply-function will only be
called if the parameters satisfy their constraints. The apply-
function will return a list of output parameter values, which
contain the results of the module execution.

3.1.4 Moduleparameterdatatypes

There is a small set of allowed data types for parameters.
They are either basic types or complex types and are all
enumerated in the type MaaateType.

3.1.4.1 Basictypes

The MPEG Maaate module interface provides the follow-
ing basic types for parameters to be passed to a module or
resulting from a module:

e a boolean type: MAAATE_TYPE_BOOL,

e an integer type: MAAATE _TYPE_INT, (this type may also
be used to pass file descriptors to or from the module)

e a real type: MAAATE_TYPE REAL, and

e a string type: MAAATE_TYPE_STRING.

3.1.4.2 Completypes

The Maaate module interface provides the following complex
types for parameters to be passed to a module or resulting
from a module:

e a pointer to an opened MPEG audio file (MPEGfile *)
constructed using tier 1: MAAATE_TYPE MPEGFILE,

e a pointer to a segment data structure (SegmentData
*), which is provided by tier 2 and contains for a cer-
tain specified time period a matrix of values:

MAAATE _TYPE_SEGMENTDATA, and

e a pointer to a segment table (SegmentTable *), which
is also provided by tier 2 and contains a collection of
SegmentData containers thus covering several time pe-
riods: MAAATE_TYPE_SEGMENTTABLE.

3.1.5 Parameterconstrints

Modules are provided with input parameter values via the
input parameter list. The apply-function of a module usu-
ally requires parameter values to be within a specific range of
allowed values. This is what we call parameter constraints.
There are three types of constraints:

e 1no constraints (MAAATE_CONSTRAINT_NONE): parameter
values are allowed to take on any value of the param-
eter’s data type,

e a (list of) single value(s) (MAAATE_CONSTRAINT_VALUE):
parameter values are allowed to take on any value of a
list of provided values of the parameter’s data type,

e a (list of) value range(s) (MAAATE_CONSTRAINT_RANGE):
parameter values are allowed to take on any value con-
tained within any of the ranges in a range list.

A single constraint is an instance of the class Mod-
uleParamConstraint being either a single value or a single
range. For one parameter, there is usually a list of con-
straints. Such a constraint list is realized by instantiating
the MaaateConstraint class. This class also provides con-
venience functions to handle constraints such as adding con-
straints or checking if values satisfy constraints.

3.1.6 Parameterspecifications

A module is a generic interface to an analysis function. Ev-
ery analysis function however requires different input pa-
rameters and produces different output parameters. The
generic interface therefore specifies that a list of (generic)
parameters be accepted by a module and a list of param-
eters be output from a module. The exact specification of
the parameters can only be produced by the module itself.
This is performed in the module’s init-function.

A parameter specification is an instance of the Mod-
uleParamSpec class, which contains the specification of

a single parameter. The specification consists of the param-
eter’s name, a description, its data type (see Section 3.1.4
for possible data types), default value and constraints (see
Section 3.1.5 for constraint descriptions). The default value
that is provided to a parameter must be of the data type of
its parameter specification.

3.1.7 Existingmodules
The current version of MPEG Maaate contains a plugin li-
brary with the following analysis algorithms:

e sumscf - loudness approximation: calculates a loud-
ness approximation based on the scalefactor values of
the frames. For more details refer to [8].

e segmentation: calculates segments on a 1D Segment-
Data structure primarily based on a threshold and a
minimum segment duration. For more details also re-
fer to [8].

e silence: calculates segments of (relative) silence us-
ing the sumscf and segmentation modules. For more
details also refer to [8].

e background noise level: using the loudness approxima-
tion, calculates how high the silence threshold has to
be set before any silence is detected.

e noise segmentation: calculates segments of high loud-
ness also using a threshold and a minimum noise du-
ration. This is analogous to the silence segmentation.

e histogram: calculates histograms on a 1D Segment-
Data structure giving an overview of the distribution
of the 1D data. This may be used to support the se-
lection of thresholds for segmentation.

3.1.8 Writing a module

The following header file has to be included in files contain-
ing module code: <MaaateA.h>. It includes all required
MPEG Maaate header files including tier 1 and tier 2 header
files.

When you want to write a module, you have to provide the
functions that specify a module: init-, default-, suggest-,
reset-, apply-, and destroy-function. The names you give
to these functions are arbitrary, however we propose to call
them init_<modulename>, default_<modulename> etc. as
we have done with our modules. They should be static func-
tions in order not to appear in the library’s symbol table.

Here are the generic layouts of these functions:

// init-function: only takes a Module pointer
typedef
void (*ModuleInitFunc) (Module *);

// default-function: takes a Module pointer and

// returns the input parameter list

typedef

list<ModuleParam> (*ModuleDefaultFunc) (Module * m);

// suggest-function: takes a Module pointer and a

// pointer to the input parameter list which it
// might change
typedef
void (*ModuleSuggestValues)
(Module * m,
list<ModuleParam> * paramsIn);

// apply-function: takes a Module pointer and the
// input parameter list and returns the output
// parameter list
typedef
list<ModuleParam> (*ModuleApplyFunc)
(Module * m,

list<ModuleParam> * paramsIn);

// destroy-function: only takes a Module pointer
typedef
void (*ModuleDestroyFunc) (Module *);

// reset-function: only takes a Module pointer
typedef
void (*ModuleResetFunc) (Module *);

In the init-function, you need to set up the module’s speci-
fication comnsisting of its description (modName, modDesc,
modAuthor, modCopyright, modUrl) and the input and out-
put parameter specifications (modParamInSpecs and mod-
ParamOutSpecs), possibly with constraints.

The modName must be a short string without blanks which
is used to identify the module. As we are planning a script-
ing interface to Maaate that uses this name as command, it
must be without blanks. The modDesc should be a some-
what longer ASCII text describing what this module does.
The modAuthor field should be a comma separated list of
names of authors of this module, each optionally provid-
ing an email address in angle brackets. The modCopyright
field should be a string such as ”(c) 2000 Sue Clancy”. The
modUrl field can optionally give the URL of a web page that
contains more details on the module.

The module input and output parameters also have to be
specified. When adding another parameter specification, it
is required to give an identifying name for the parameter,
a description, the parameter’s type, its default value and
possibly constraints.

You should also specify a default-function, which creates
a parameter list from the parameter specification given in
the init-function and sets default values for the parame-
ters. Input and output parameters of modules are stored
in a list (list<ModuleParam>). The parameter values have
to adhere to the parameter specification defined during the
init-function of the module (list<ModuleParamSpec>) and
come in the correct order. If this function relies only upon
default values given in the init-function, it is not required to
implement the default-function as its standard implementa-
tion uses the specification given in the init-function to set
up the input parameter list.

You don’t need to specify a suggest-, reset- or destroy-
function, except if you would like to provide their functional-
ity to an application. We recommend to at least specify the

suggest-function, which changes constraints and parameter
values according to already specified values. It also assures
that constraints are met.

The apply-function is the function the provides the function-
ality of the module to an application. If you would like to
share information between the functions of a Module or be-
tween different calls of a function, it is best to declare static
global variables within the source code file of the module
and communicate values through these variables. Thus, it
is best to specify all the module functions within one file.
Remember to specify the functions and global variables as
static to prevent them from appearing in the library’s sym-
bol table.

3.2 Plugin libraries

3.2.1 Whatis a pluginlibrary?

A plugin library is a separately compiled, shared library.
It may contain one or many modules. Several such libraries
may be dynamically loaded using MPEG Maaate tier 2. Sin-
gle modules or complete libraries may also be unloaded from
Maaate Maaate as required by the application.

The modules are all administrated within one instance of
the Plugins class. This class therefore provides function-
ality to load and unload single modules and whole plugin
libraries, and administrates the list of available modules. It
also provides functions to access modules by their name.

3.2.2 Building pluginlibraries

When building a shared library to contain one or more mod-
ules, a function called loadModules has to be supplied,
which instantiates the modules of the library and returns
their list to MPEG Maaate. Similarly an unloadModules
function has to be supplied, which deletes the instantiated
modules. These are the only names that should be exposed
in the library’s symbol table; declare all other functions and
global variables as static.

In order to load several modules contained within one plugin
library, it is best to specify within each module’s file another
function that instantiates a Module with the given functions
and returns it. Then, there has to be a separate file that
contains the loadModules function, which calls all theses
functions, pushing the instantiated Modules into a Module
list which gets returned by the loadModules function upon
opening the shared library with tier 2.

3.2.3 Usingpluginsin applications

If an application wants to dynamically load modules, it is
first required to create an instance of the Plugins class and
then load the shared module libraries with any of the loading
functions defined within the Plugins class, for example:

// open a plugin library
Plugins * plugins = new Plugins();
plugins->AddLibrary (string("1libMaaateM.so")) ;

The AddLibrary call also creates an instance of the Plug-
inLibrary class which loads all the contained modules of the

given plugin library and sets up input and output parameter
specifications for them.

The application may then call the following functions in se-
quence to use a module’s functionality:

// returns a pointer to the requested module
Module * m = plugins->GetModule('"modulename") ;

// creates the input parameter list for a
// module from its specification
list<ModuleParam> paramsIn = m->defaultValues();

// application makes changes to parameter values

/...

// possibly call suggestValues:

// suggests further parameter values and changes
// constraints

m->suggestValues (¶msIn) ;

// application makes possibly further changes
// to parameter values

/...

// perform operations using input parameter values
// and store results in output parameter list
list<ModuleParam> paramsOut = m->apply(¶msIn);

// possibly call reset()
// resets internal module values
m->reset () ;

// possibly call apply() again
/] ...

// deletes the module after calling its destroy
// function and unloads all the modules of the
// library from Maaate

m->"PluginLibrary() ;

4. BEWDY

In order to demonstrate the capabilities of MPEG Maaate,
we have implemented a graphical application that enables
users to visualize the results of a few modules. The appli-
cation is called bewdy. It runs in the GNOME application
environment and requires an OpenSound Sysetm compat-
ible sound API. As mentioned in Section 3.1.7 the current
distribution of MPEG Maaate contains a plugin library with
modules to calculate a loudness approximation, silence seg-
mentation, noise segmentation, background noise level and
loudness histogram. These modules are visualised in bewdy.
It displays the distribution of silence and noise segments and
enables navigation through the file based on these. A user
can also interactively change the parameter settings for cal-
culating silence or noise segments and thus experiment with
different types of results.

Figure 3 shows the display of bewdy for a radio news broad-
cast. The display is organised into timelines with time in-
creasing from left to right. Time resolution may be chosen
as required using the zooming buttons. The top timeline

displays the loudness approximation as a curve. To the left
of it, the loudness histogram is displayed and helps in adjust-
ing parameters for silence and noise segmentation. At the
bottom, the calculated background noise level is displayed
which also helps in setting parameters.

The timelines below the loudness are synchronised with the
loudness with respect to time. Each row represents the re-
sults of one execution of either a silence or a noise segmen-
tation and thus visualizes a SegmentTable. The displayed
top two SegmentTables are results of silence segmentations
with different parameter settings. The brightness of a seg-
ment indicates its confidence, i.e. the brighter it is the more
reliable is the calculated silence. As the loaded file is a radio
broadcast, we have chosen parameter settings such that the
first one gives news stories and the second one phrases. On
a live demonstration, this can be validated interactively by
selecting a segment or a subpart of the loudness curve and
activating the play-segment-button. The third segmentation
displays the results of a noise calculation.

5. CONCLUSIONS AND OUTLOOK

We have presented our toolkit for audio content analysis
on MPEG-compressed audio: MPEG Maaate. The toolkit
has been published as open source software under the GNU
General Public License (GPL) and is available from
http://www.cmis.csiro.au/dmis/Maaate/. We are currently
working on further analysis algorithms such as speaker
change detection or segmentation of music, speech, and
sound effects. Such algorithms are useful to automatically
segment and index MPEG-encoded audio files to gain direct
access to specific content. An example application may be
the automatic extraction of all music parts contained in a
movie.

‘We have also presented bewdy, a GUI to the loudness-based
segmentation algorithms contained within MPEG Maaate.
It provides an intuitive human computer interface to demon-
strate and investigate the effects of different parameter set-
tings on loudness-based segmentation results. We are plan-
ning to adapt bewdy to the plugin module interface such
that it dynamically creates menus and displays based upon
the list of loaded modules.

6. REFERENCES
[1] G. Boccignone, M. D. Santo, and G. Percannella. Joint

audio-video processing of mpeg encoded sequences. In
Proc. IEEE Intl. Conf. on Multimedia Computing and
Systems (ICMCS), volume 2, pages 225-229, 1999.

[2] Haskell, Puri, and Netravali. Digital Video: An
Introduction to MPEG-2, chapter 4. Chapman & Hall,
New York, 1997.

[3] ISO, International Organization for Standardization.
International standard 11172-3, Information technology
- Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 MBit/s - Part
3: Audio, 1993.

[4] Y. Nakajima, Y. Lu, M. Sugano, A. Yoneyama,
H. Yanagihara, and A. Kurematsu. A fast audio
classification from mpeg. In Proc. IEEE Intl. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP),

ile Edit WView Settings Help ‘

i f) B> = B> ®

Zoom |n Zoom Out View Al Play all Play Segment||Play Selection Stop

.J"H“""'I'w |

rI.I‘IN".

Silences (threshhold min dur 0.10s < lnterrupt O

releas m)

min dur O < interrupt 0.

E Background Maoise Silence Noise
Background noise level: 0.01

Figure 3: Screen dump of bewdy

volume IV, pages 3005-3008, Phoenix, Arizona, USA,
May 1999.

[5] P. Noll. MPEG digital audio coding. IEEE Signal
Processing Magazine, pages 59-81, September 1997.

[6] D. Pan. A tutorial on MPEG /audio compression. IEEE
Multimedia, 2(2):60-74, Summer 1995.

[7] N. Patel and I. Sethi. Audio characterization for video
indexing. In Proc. SPIE, Storage and Retrieval for Still
Image and Video Databases IV, volume 2670, pages
373-384, San José, CA, USA, February 1996.

[8] S. Pfeiffer, J. Robert-Ribes, and D. Kim. Audio content
extraction from MPEG-encoded sequences. In P. Wang,
editor, Proc. Fifth Joint Conference on Information
Sciences, volume II, pages 513-516, Atlantic City, New
Jersey, Feb/Mar 1999.

