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Abstract prototype hardware is available and most of the specifi-
cations of the architecture have been made public. This
allows us to give more technical details about our work.

The IA-64 architecture co-developed by HP and Intel is

going to reach market in the second half of 2000 withIn previous publications [3, 2], we gave a general
Itanium as its first implementation. All the major indus- overview of how the project got started and how the first
try players have endorsed this architecture and nowadevelopments were made using the HP I1A-64 instruction
days most of the specifications are public. To provideset simulator. In this paper, we quickly review some of
for early availability of Linux on this platform, the port the key system-level features of IA-64. Then, we de-
started over two years ago at HP Labs and grew to bescribe in detail most of the major machine dependent
come an industry wide effort. A major milestone was SubsyStemS of the kernel like the virtual memory, inter-
reached earlier this year, when the entire source codgptions and signal handling. We also explain how the
produced to support this new platform was released tdA-32 emulation is implemented. In the second part, we
the Open Source comunity. In this paper, we describdlive a status update on the developments at the appli-
some of the key System architecture features of |A_64cati0n level. We cover the Iibraries, development tOO'S,
and the major machine dependent kernel subsystemgraphical environments and also Linux distributions. In
We also give a brief update on the application level dethe last part, we describe the recently released 1A-64
velopments including the software development kit forsoftware development kit which allows people with no
Linux/ia32 recently released. IA-64 hardware to develop applications and do kernel

hacking on any Linux/ia32 systems.

1 Introduction i .
2 1A-64 architecture overview

The Linux/ia64 project started over two years ago at H

P _ . .
Labs with the initial toolchain and kernel work. This The firstimplementation of the HP and Intel co-designed

activity later became part of a broader industry effort/A-64 architecture, the Itanium processor, has now been

known as the IA-64 Linux Projett(formerly Trillian produced and will reach market later this year. It will
project). be quickly followed by the faster McKinley in 2001.

This new architecture builds upon lessons learned from
VLIW and RISC. It introduces a new paradigm called
EPIC (Explicitely Parallel Instruction-set Computing).
_The idea is to expose instruction level parallelism (ILP)

tems reach market. Itanium-based products are sched@ the compiler and use faster simpler hardware. The
uled to appear in the second half of 2000. Since lasfOMPpiler is closer to the source code, i.e., it can get a
February, we have released to the Open Source comm&€ler understanding of what the program is trying to
nity all source code, making Linux/ia64 the first publicly @Chi€Ve, ithas access to more resources in terms of time
available operating system for this platform. As of today,2Nd space to help make optimization decisions.

The goal of this project is to produce a single, fully func-
tional and optimized port of the entire Linux operating
system to the |A-64 architecture by the time the first sys

LCheck out http://www.linuxia64.org Like VLIW processors, |1A-64 groups instructions into



‘127 128-bit bundle o‘ bits it is possible to enable or disable the use of either
partition. A fault would be generated if access occurred

to a disabled partition. This mechanism can be used to

speed up the context switch code as we’ll see later on.

‘ instruction 2 H instruction 1 H instruction O H template ‘
41 41 41 5

Figure 1: IA-64 Instruction Format
IA-64 also defines a large set of application registers

(AR) which are used to hold state information for the
o _ stack engine, IA-32 emulation, atomic operations and
bundles as shown in Figure 1. Each bundle containg,op operations. An interesting AR is the.itc

three instruction slots of 41 bits each and a templat§yhich is the cycle counter. Wher.itc  is equal to
field used to encode which functional units are requiredyr jtm | the interval timer matching register, a “timer”

(M-unitfor memory access, I-unit for integer operations, interrupt is generated. This can be used as a very low
F-unit for floating point, B-unit for branching). cost interval timer.

Unlike VLIW, IA-64 allows concurrent execution of There is also a set of eight ARs, called Kernel Regis-
multiple bundles. Groups of instructions that can be ex+ers (KR) which are writable only at the most privileged
ecuted in parallel are terminated by a stop bit which isjeve| put readable at any level, they can be used to safely
encoded in the template field. Such a stop is requiregyo|d some non sensitive kernel state. Some of the con-
when you have dependencies between consecutive ifyg| registers (CR) are used to change the behavior of the
structions, like in a producer-consumer relationship. Thecpy with regards to fault handling. Others point to sys-
information required for safe parallel execution is en-tem wide tables, liker.iva  which points to the OS-
coded in the instruction stream. This yields better portayefined interrupt vector table (IVT). The CRs also hold
bility across CPUs of the same family. It must be notedine state of the machine when an interruption occurs.
that stop bits can appear in the middle of a bundle.

IA-64 provides a classical load/store model like RISC
It has been over a year since the first public specificag|ong with up-to-date features like multimedia instruc-

tions of the architecture [5] have been made public. Eartjons. |t also introduces some unique features which
lier this year, the system architecture [7] has been reye|| review quickly now.

leased and just a couple of weeks ago the microarchi-

tecture specifications [8] for the Itanium processor have

been available. Today, you can get a lot of information2 2  predication
on the architecture from Inteand HP web sites.

In past publications [3, 2], we have already describedrhe concept of predication is implemented using 64
in deta“ some Of the Unique features Of the architecturepredicate registers of 1 b|t each_ The idea iS to avoid as
So here we will only focus on a small subset to help themych as possible branching on conditional statements
reader understand some of the kernel design choices. by simply prefixing every instruction with a predicate.
When the predicate evaluatesttoe the instruction is
] executed, otherwise it simply behaves likenap (no
2.1 Register sets operation). The architecture provides powerful ways
of writing complexif-then-else statement using
predicates and parallel comparisons like shown in Fig-
This architecture provides a large set of hardware reyre 2. In general the compare instructiomp, sets the
sources to the programmer. A total of 128 integer reg-irst predicate tarue if the test is positive and the sec-
isters, also called general registers, of 65 bits each argnd predicate to the opposite value, ifalse . In the
available. The 65th bit is used during speculative OP-code shown in Figure 2 both compares are run in par-
erations. Integers registefs32-r127]  are called gjle| and they target the same predicates. At first, this
“stacked registers” and are used with the stack enginghay seem like a conflict but in this case it isn't because
during function calls. You also have 128 floating pOint of the type of test performed_ The.andcm Compari_
registers of 82 bits each. Because of the large numbeson will only write both predicates withl=false and
of floating point registers, I1A-64 splits them in two par- p2=true when the result of the test is negative: negates
titions of 32 and 64 registers each called low and highhypothesis opl=true . So if you initialize the predi-

Using the processor status register (P8f) anddfl cates correctly, you will get the desired effect of a logical
2Go to http://developer.intel.com/design/ia-64/ or operation. If the test succeeps will be true , p2
3Go to http://www.hp.com/go/ia64 will be false and we’ll execute the first addition. Oth-



erwise we'll run the second addition, indeed performing current stack frame (CFM)
[ |

the complexf-then-else statement in 3 cycles (in- function A . . B}
cluding initialization), without incurring any branches at ‘ Inputs locals ‘ outputs ‘
a” 5 10 | 5 |
br.call function B 32 14
dirty outputs ‘
| s |
. B: alloc r37=ar.pfs,5,4,0,0 r32 1137 a1
The following C code: dirty inputs | locals
5 4
if r2 ==0 && r3 == 1) i
i current stack frame
r32 = r33+r35; | |
else register backing store (RBS) ‘
r32 = r36+r33+1, i 1
AR.BSPSTORE AR.BSP

gets translated into:

Figure 3: Register Stack Engine (RSE)
/Il r0=0 constant zero

I/l sets pl=true, p2=false

cmp.eq p1,p2=r0,r0;;

cmp.eg.or.andcm pl,p2=r2,r0 2.4 The stack engine

cmp.eqg.or.andcm pl,p2=r3,1;;
(p1) add r32=r33,r35
(p2) add r32=r36,r33,1 To avoid unnecessary register spills and fills on function
calls, 1A-64 provides a dynamic renaming scheme for
the stacked registers. Each time you enter a new func-
tion you get a “new” set of registers for local and output
variables.

Figure 2: Predication and parallel comparisons

Figure 3 describes what happens when you call from
function A to function B which has 5 arguments. The
2.3 Speculation top bar shows the current stack frame of function A.
The attributes of the frame are part of the current frame
marker registetCFM The size of the frameZFM.sof
is 20. The number of “local” register§&FM.sol , is
Another unique feature of IA-64 is control and data 15 = 5 input arguments + 10 locals. From this informa-
speculation. The idea is to provide the compiler withtion, we can deduce that the maximum number of output
a mechanism by which it can safely move load instruc-registers needed by function A to call any other func-
tions around to accommodate for memory access latencions it uses i<CFM.sof-CFM.sol=5 . TherXX no-
without having to worry about faults that may occur, like tation shows the logical name of registers that the pro-
NULL pointer dereferences or page faults. gram manipulates while the bars represent the physical
registers. You can see that thecall  triggers the re-
Speculative loads are available for both integer and floathaming based on the number of output registers, in this
ing point registers. If the load fails, instead of “taking” case 5. At this point32 is the first argument to func-
the fault, the error is recorded in the NaT bit of in- tion B. Thealloc instruction in function B resizes the
teger registers, i.e., the famous 65th bit. For floatingframe to the needs of the function. Obviously it has 5
point registers a special valuddtVal )is usedinstead. arguments and here, we added 5 locals. The branch also
When the program actually needs the result of the loadcauses the frame marker of function A to be copied into
it checks the NaT bit of the register used as the load tarthe previous function state registar.pfs , This is a
get. If it is not set then the speculation was successfupreserved register and it must be saved (hergin) and
and execution continues. Otherwise, the load can be raestored by function B in case it gets modified, like dur-
tried or some recovery code can be invoked. ing a subsequent function call from B. The registers that
were part of function A's locals are now inaccessible by
Control speculation allows the compiler to move a loadthe program (actually been automatically preserved) and
before a branch that guards it in a safe manner. Similarlyare part of the set of physical registers which contain old
data speculation allows to move a load, then called adstate, i.e., they are “dirty”. When the number of phys-
vanced load, before a store that might conflict becauséal registers is exhausted by the renaming mechanism,
of aliased addresses. the register stack engine (RSE) does spill the “dirties” to



virtual address 0

a designated memory region, called the register backing‘sj/RN ‘6"
store (RBS). When execution returns from nested calls,

the RSE automatically restores registers from backing
store as needed.

region registers

"o rid=t
rl ria=s
. . . . . 2 T_Cfr
Two registers describe where the stack engine is with re- v i region g B
gards to spills and fills. Register spills are managed in " rid=o -
a first-in first-out (FIFO) manner. Thar.bspstore " rig= o

register points to the memory location where the next
register spill will occur (for our example, it is where the
r32 of function A will be saved). Thar.bsp regis- 2°61 bytes L]
ter points just above the location where the last register
will be saved (above wheng6 of function A will be
saved), i.e., the top of the backing store. At each func-
tion call,ar.bsp is advanced towards higher addresses
(grows up) to accommodate the new dirty registers. For
optimization purposes, the RSE can be configured to run ) )
in two major modes via an application register called Figure 4: Virtual address space
ar.rsc . In lazy mode, spills will only occur when the
pool of physical registers is exhausted. In eager mode,
the RSE may choose to spill asynchronously from pro 5.1 virtual memory
gram execution. In the current Itanium chip, only the
lazy mode is implemented. It should be noted that the
programmer has the poss|b|||ty to force a Sp||| opera_|A-64 pl’OVidES a flat linear 64 bits address space. The
tion explicitely using theflushrs  instruction. Sim-  Translation Lookaside Buffer (TLB) supports different
ilarly, the loadrs instruction can be used to force a Page sizes (from 4KB to 256MB) and is composed of a
RSE reload, i.e fill operation. translation cache (TC) and a set of translation registers
(TR) used to pin entries. There are at least 8 instruction
Although this mechanism is useful for passing parame-TRs (ITR) and 8 data TRs (DTR). Itanium has 8 ITRs
ters, it does not obviate the need for a real memory stackénd 48 DTRs. The size and structure of the TC is imple-
The software calling convention [4] dictates that at mostmentation specific, for instance Itanium implements a 2
eight integers registers can be passed by this mechével data TC (with 32 and 64 entries respectively) and a
nism, any extra arguments use the memory stack. Upingle level instruction TC with 96 entries. 1A-64 also
to eight floating points can be passed in registg8s ( supports a Virtual Hash Page Table (VHPT) which is
f]_5] ) E\/erything beyond that uses the memory stackan extension of the TLB, i.e., a hardware walker, which
Also any local memory storage (large auto variables/ooks for mappings in memory. As its name indicates it
alloca() ), non stacked registers spills/fills require a IS mapped into the virtual address space.
real memory stack. Therefore 1A-64 applications and
OSes have to deal with two stacks: the memory stacdhe 64 bits address space is split into 8 regions of
and the register backing store (RBS). 261 pytes each. The upper 3 bits of the virtual address
are used to select the virtual region number (VRN) as
shown in Figure 4. Each VRN identifies a region reg-
ister (RR) which contains 2?4 bits wide unique region
identifier (RID). Thus, at any time, a program can access

2724 regions

2.5 System architecture up to 8 of the22* possible regions. Those values rep-
resent the architected maximals, Itanium, for instance,
implements:

54 H —
Last February, the system architecture [7] of IA-64 was ° 2** bytes virtual address space (54=3+51)

unveiled during the Intel Developers Forum (IDF). This 4 944 bytes physical address space outét bytes
provides a lot of material to talk about. Here we focus possible. The 64th bitis used as a memory attribute,

mostly on the virtual memory and interruptions mecha- i.e., cached/uncached
nisms to help understand how the Linux/ia64 kernel has
been designed. e 18 bits for the width of the RID



virtual address

‘eav - ‘ T ey Eaprovmny Interrupts are asynchronous events generated by I/O de-
vices, platform management interrupts (PMI) or initial-
region registers ization interrupts (INIT). They are handled by an inter-
rupt vector table (IVT) that the OS defines and which is
pointed to by ther.iva  register. To allow for efficient
interrupt processing, this table contains actual code and

I35 RIRVED

not just an indirection. Some entries can have up to 64
W bundles and others up to 16. If the interrupt processing is
\_. e short, it can be entirely treated inline without any costly
oa o[ vew i e | branching outside of the table.
[rid [key [ wen Jrights| PPN \ Faults occur when an action cannot be accomplished and
‘62 ! *‘ °‘ are thus synchronous with the execution. Finally traps

PPN offset

occur when an operation requires software assist, like
Figure 5: TLB lookups some floating point operations or whe_n single stepping.
g P Both faults and traps are dispatched via the IVT.

Interrupts from devices are called external interrupts.

Avirtual address is decoded to yield the physical addres¥:-64 supports up to 256 such interrupts grouped in 16
as described in Figure 5. Given that multiple page size®riority classes of 16 each. To help get efficient interrupt
are supported, the width of the VPN field can vary and isProcessing, 1A-64 provides the OS programmer with a
denoted in the figure by the symbol. The virtual page S€t of shadow reglsters_after the interrupt occ_:urred._Reg-
number (VPN) as well as the region identifier (RID) are iSters[r16-r31] are, in reality, banked registers, i.e.,
hashed and a matching entry is searched in the TLB. If #0U g€t 2 sets. On interrupt, the processor automatically
match is found and permissions and protections keys aréWitches from bank 1 to bank 0, actually giving you 16
valid, you get the physical address by concatenating thel'€€” registers.
physical page number (PPN) with the offset. If a transla-
tion is not found and if the VHPT has been enabled, the
processor looks in the memory structure for a match. If
a match is found it is automatically inserted into the TC.2.5.3 1A-32 emulation
Otherwise a TLB miss fault is generated and the soft-
ware miss handler is invoked.

Although IA-64 is a completely new architecture, it al-
Protection keys registers (PKR), just like protection!OWs IA-32 applications to run unmodified on top of an
identifiers (PID) for PA-RISC [10], provide an addi- A-64 OS using a hardware assist.
tional method to restrict permissions by tagging virtual _ ) -
pages with a unique identifier. The architecture require§'€@rly, the goal is to allow progressive transition of ap-
at least 16 keys and the maximum width is 24 bits. lta-Plications from 32 to 64 bits. In the context of Linux this
nium implements 18 bits. If the executing context pos-1S NOt that big an issue because for most applications,
sesses the key and assuming regular permissions are V§purce_co_de is a\_/allable and recompilation or a_dap_tatlon
idated, access is granted, otherwise access is rejected.!ft 64 bits is possible. But for a small set of applications,

is up to the OS to manage those keys. like Netscape Navigator, where only a binary form is
available, itis of high importance to make them run with

no modifications right away.

2.5.2 Interruptions The processor can be set in two modes of executions,
IA-64 or 1A-32. The Instruction Set bit$ ) of the PSR
indicates the current mode of execution. To switch from

IA-64 understands four types of interrupts: aborts, inter-one mode to the other, you first need to setup the cor-

rupts, faults and traps. rect register state and then you can use one of the three
switching instructions to toggle the mode. At the user

Aborts are generated by hardware error machine checlsvel, br.ia  is used to switch to 1A-32 anfinpe to

(MCA) or processor resets and are handled by the proswitch to 1A-64. At the kernel level, théi  instruction

cessor specific firmware layer called PAL [7] (Processorcan be used to switch to either mode based on the IS bit

Abstraction Layer). of the PSR that is being restored.



2.5.4 Performance monitors Although this may seem like an extra overhead due to
the rapid evolution of this branch, it turned out that, in
the end, it was a win because the final integration into
. ) . the mainline went very smoothly. Since February of this
the compiler. A lot of information can be extracted from ear and as of 2.3.42, most of the IA-64 patch has been
the source but oftentimes, it is necessary to actually ru%erged into the mainiine kernel by Linus. We are con-
the program to see how it behaves._Once traces are COé’tantly tracking the current development (we are at 2.4
lected they can usually be fed back into the compiler “S'today) and update our kernel patch accordingly. A us-
ing a technique called Profile Based Optimization (PBO)abIe Linux/ia64 source tree can be found at the official
which most modern optimizing compilers support. Thekernel web site at http://www.kernel.ofg/

IA-64 architecture provides a unique set of tools to help

programmers get detailed profile information about theIn this section we will cover some of the key machine

behavior of a program. dependent subsystems of the kernel.

For 1A-64, most of the performance responsibility is on

The Performance Monitoring Unit (PMU) offers a set

of registers called Performance Monitoring Data (PMD)3 1  General properties
and Configuration (PMC) registers which can be pro-

grammed to capture single or multi-occurrence (per cy-

cle) events. Depending on how you setup the registers, | Type | Size | Alignment |
you can monitor only your application while it's run- char 1 1
ning in user mode or only in kernel mode or both. You short 5 5
can also monitor only the kernel or the entire system. Nt 2 7
You can get a complete cycle break down of the pro- float 7 7
gram. Some counters have thresholding capabilities that long Nt 8 8
let you count how many times did event A take more .

than X cycles. You can restrict the monitoring to spe- '°r_‘9 long int 8 8
cific piece of code or data. You can also monitor a set of void x 8 8
instructions by specifying a template opcode. Although double 8 8
cycles accounting gives you a picture of how the pro- long double 16 16

grams behaves, it does not really help you find where
the bottlenecks are. Some of the PMD/PMC are called
Event Address Registers (EAR) and they are used to

record the code location of where some cache or TLBrhe Linux/ia64 kernel has been designed from the be-

miss events occurred. ginning as a 64-bit operating system. It uses little-endian
) ) byte ordering model for obvious compatibility reasons

For obvious space reasons we cannot go into more degjth |A-32. IA-64 can be configured to run in big-endian

tails about all the other aspects of the architecture bugg well, so with little extra support, it is conceivable to

you can refer to [5, 6, 7] for more information. We have pave big-endian processes.

covered just enough to go into the kernel design descrip-

tion. Linux/ia64 uses th&P64 data model like all other 64-

bit Unix systems on the market. This means tioaty

and pointer variables are 64 bits wher@as variables

are 32 bits. Table 1 defines the sizes of the various data
3 Kernel internals types.

Table 1: Various data types

Wherever possible we have tried to follow all the stan-
The work on the kernel started almost two years ago adards defined for 1A-64. This includes the software
HP Labs using the HP 1A-64 instruction set simulator calling conventions [4], the application binary inter-
(ski). The goal of the project was to produce a straightface definition [9] (ABI) and also the Developer In-
port of Linux to IA-64. This means that we have tried terface Guide [1] (DiG64) which establishes a set of
to minimize as much as possible changes to the machinkasic system building blocks and defines the required
independent part of the kernel. Most of the new code isand optional interfaces between the hardware, firmware
located undearch/ia64 andinclude/asm-ia64 and the OS. By being DIG64 compliant we ensure that
directories. We also decided to follow closely the devel- 450k into pub/linuxikemel/portsfia64
opment branch of the official kernel, i.e., the 2.3 branch. 5forlong double , currentgcc limits size=8, align=8




Linux/ia64 will run on any hardware that follows the kernel memory stack )

guidelines. 1

In order to make porting of existing Linux applications

easier, we have strived to make ABIs compatible with 1 2N *PAGE_SIZE
the Linux/ia32 whenever feasible. For example, We | kernel register backing (32KB)
picked identical numerical values fawctl() com- store

mands, signal numbers and error codes, for instance. <\ alighmentgap

This is especially useful for “not so well behaved” ap- L

plications which have hardcoded those values. struct task_struct I 2.6KB

3.2 Register usage Figure 6: Theask _struct allocation

Name | Content | _

13 current task pointer of the state. We have seen th??lt IA-64 requires every

process to have 2 stacks, this yields a total of 4 stacks

to deal with between user and kernel mode executions.

When entering the kernel, the memory and register back-

ing store stacks are switched from the user to the ker-

nel pair. To simplify the allocation of the kernel stacks,

Table 2: Kernel register usage we “bundle” them with théask _struct as shown in

Figure 6. The software convention dictates that a mem-
ory stack grows down whereas the backing store grows

One of the benefits of having a large number of registersip. To detect collision we made them grow towards each

is that you can dedicate some of them for a single purother.

pose, thus avoiding memory latency to reload the infor-

mation each time it is needed. In the kernel, we decided'he register context of a process is decomposed into 3

to fix the usage of a few registers which point to informa-data structures in a typical Linux kernel. The layout of

tion that is heavily used. The best example is¢he the each structure is strongly influenced by the calling

rent global variable which points to the currently exe- convention which defines which registers are scratch,

cuting process. It is referenced many times throughouite., saved by caller (free to use directly), versus pre-

the code. Interestingly enough, one of the general regserved, i.e., must be saved prior to being used. The lay-

isters, i.e.r13 , is also known as the thread pointer, so out we use is as follows:

we decided to use it to hold thearrent  task pointer.

To tell the compiler not to touch this register, we use the

-fixed- ~ Xoption ofgcc , which forbids the usage of 1. thestruct pt _regs (= 400 bytes), which con-

ar.k0 legacy I/O base address

ar.kb floating pointer high partition owner
ar.ké physical address of current task structu
ar.k7 physical address of page table

=

e

the register specified(here). Table 2 summarizes cur- tains mostly the scratch registers, is saved every
rent fixed register usage. We'll see later whatk5 time the kernel is entered (synchronously or asyn-
andar.k7 are used for. chronously).

For optimization reasons, we also restrict the kernel 2. theswitch _stack (= 500 bytes), which mostly
from using some floating point registef§10-f15] contains the preserved registers, is only saved when
andf32-f127] ). Using floating point variables inside the process goes to sleep, i.e., there is a context
the kernel is never a good idea. However on IA-64, some  Switch, or during some debug operations.

integer operations, like multiplication, are performed in

floating registers. For this reason, the rest of low parti- 3- thethread _struct  (~ 1700bytes) contains ad-
tion is accessible to the kernel. ditional state like the debug registers, kernel mem-

ory stack pointer and the high floating point parti-
tion.

3.3 Process subsystem

Except for thethread _struct , which is part of the
In the Linux kernel, each process is represented by @ask _struct , the rest of the state gets saved onto the
task _struct data structure which encapsulates mostkernel memory stack of the process.



As alluded to earlier, we use a lazy method to save thas lightweight as possible. An important factor is how
floating point state, i.e., we save it only when this be-parameters are passed between user and kernel mode.
comes necessary. This means that the floating point corAs per the calling convention, parameters are generally
text of a process can still be live in the CPU even thoughpassed in stacked registers. In the case of system calls
the process has been switched out. This technique isowever, this is a little bit more difficult because of the
used only for the high floating point partition which in- way the call is implemented.

cludesf32-f127 and represents 1.5KB when saved to
memory. To guarantee that the state is not lost, we sim-
ply disable the high partition by settifgSR.dfh to 1 | :
when a process is switched out. As soon as another pro- ‘ Kerneladdress space
cess needs to access a register in that partition we get ¢

fault. At this point, we save the state of the original pro-

cess, which task structure is pointed todnyk5 , into T - o
thread _struct . After saving, we change the owner- 1] hepore

ship and re-enable the partition. So unless another pro- -
cess requires the partition, no saving occurs. As of today, | 3

:
. I 8*ndirties

we save this partition on every context switch in case of
an SMP kernel. It should be noted that we use a similar
“lazy” technique to save the debug registers.

before switch after switch

3.4 System calls Figure 8: Stack swicthing during syscall

alloc r2=ar.pfs,1,0,8.0 A break instruction causes a synchronous interruption
mov ri5=1028 of the execution. Thus when we enter the kernel, the
break.i 0x100000 state of the registers is as follows:
cmp.eq p6=-1,r10

(p6) br.cond.spnt __syscall_error

br.ret.sptk.many b0 e preserved: if the assembly code does not need them

then we have nothing special to do. They will be
saved as needed by the C compiler.

Figure 7: System call stub

e scratch: we need to save them for tools, like the
debugger, which need to access the process state.
They end up being saved on thie_regs structure.

User and kernel mode executions do not happen at the
same privilege level for obvious security reasons. To
enter the kernel for a system call, a process has to go
through a special stub usually found in the C library.
On |IA-64, one way to enter is to cause a trap with aDuring system call, we must make sure that system in-
break instruction as shown in Figure 7. On a trap, ex- tegrity is not compromised by kernel state flowing back
ecution continues in the interrupt vector table (IVT) in to the user for no reason. Therefore stacks must be
thebreak entry. There, the code checks whether or notswitched. Special care must be taken with scratch regis-
this is an actual system call by looking at theeak ters as well. Today, because we save them on entry and
value which, in this case, i8x100000 as defined by restore them on exit, no kernel state transpires. However
the ABI manual [9]. Registerl5 holds the identifier in future optimizations we will likely try to avoid saving
for the call: herel028 corresponds t@pen() . This  scratch registers but we will still need to, at best, clear
value is an index into the system call table. Once thehem on exit.
function is located, it is simply called. Upon return, we
check for errors and set0 to be-1 in case of failure.  Switching the memory stack simply requires changing
The error codeerrno , is contained ir8 . To restart the stack pointerl2 . For the register backing store,
execution in user mode, the kernel restores the user staits a little bit more difficult because it can operate in the
and eventually executes a return from interrugit () background. Figure 8 depicts what happens when we
instruction. switch RBS. You must first stop RSE operations, i.e., put
it in enforced lazy mode, so that it does not try to spill
Systems calls are very often part of the critical path ofunless necessary. We pay special attention not to trigger
an application so we must make sure their invocation isany request for more stacked registers, i.e.aloc



At this pointar.bsptore needs to be switched to the work to do on every call. Moreover this instruction does
kernel backing store (KRBS). This will automatically not generate as much disruption at the microarchitecture
causear.bsp to move as well, such that: level compared to an interruption.

ar.bsp=ar.bsptore + ndirties*8 3.5 Virtual memory

In the equationndirties represents the number of

registers (each being 8 bytes long) that were still “live” As described in Section 2, the architecture supports dif-

from previous stack frames and awaiting to be spilledferent page sizes. The current mainline kernel how-

Oncear.bsptore  is switched, we can restart RSE op- ever, does not have support for variable page sizes. The

erations. In the case of a system cali,bspstore Linux/ia64 kernel supports compile-time configurable
is always switched to point to the next 16-byte alignedpage sizes. It currently supports sizes: 4, 8, 16 or 64KB.
address above thtask _struct , i.e the KRBS base, From a programmer’s point of view, this means that any

as we described in the previous section. The memoryrogram relying on knowledge of the page size, must
stack is switched to point to the top of the 32KB re- use thegetpagesize() system call instead of hard-
gion, which starts at théask _struct , as it grows coding a value. The reason for supporting different page
down. The first data structure stored on this stack is th&izes are as follows:

pt _regs . One interesting aspect of this “exercise” is

that some user state may have been saved in the user

backing store while the rest will be saved in the kernel ® if you want to minimize TLB misses, you want
backing store as execution continues. So upon leaving larger page sizes especially knowing the code ex-
the kernel, just before switching back the the user back- ~ Pansion factor of IA-64 vs. IA-32. Page sizes of 8
ing store, we make sure that whatever might have been  Or 16KB are better for native binaries.

saved onto the KRBS gets reloaded back into the physi-

cal register set using tHeadrs instruction. * larger page size yields larger address space (see

later).

During this switching phase, the parameters to the sys- , 4kB page size is the best for 1A-32 emulation.
tem call are completely preserved in the stacked regis-

ters. Once we are ready to call the first C function,

i.e., the actual syscall, we simply needbacall . | Reg | Usage | pgsize | Scopel| Map ]
This is very efficient however there is one known prob- | 7 cached 256MB | G |
lem: system calls can be restarted. Normal C conven{ g uncached 256MB | G I
tion allows parameters to a function to be modified as vmalloc

any other local variables. Although this is perfectly fine | g guard 8KB G P
for regular functions, this causes some problems on sys; gate

tem calls because of the restart mechanism. We passy stack segment | 8KB P P
system calls arguments straight from the user code, weg3 data segment | 8KB P P
have no private copy of their values upon entry, so if 5 text segment 8KB ) )
they are modified and the kernel needs to restart we— shared memory | 8KB P P
are in trouble. The solution we use is to hint the com- 0 IA-32 emulation| 8KB ) )

piler about the nature of certain C fu.nction.s within the scope: G=global, P=process; map: I=identity, P=page table
kernel. All system calls use a special attribute named
syscall _linkage . This informs the compiler that Table 3: Regions usage
parameters are to be treated as read-only: if a modifica-
tion is required then a copy must be made.

The IA-64 architecture splits the virtual address space in
As a future optimization, we plan on using the enter priv-8 regions. Table 3 gives the breakdown per region for
ilege codeepc instruction. This one is similar to the Linux/ia64. The top two regions are for kernel use only.
B,GATE instruction of PA-RISC. It raises the current The cached and uncached regions are identity mapped
privilege to the one of the page it is placed on (wouldand are used to access physical space with a different
be 0 to enter the kernel). The major difference comesaching policy. The kernel code and datareside in region
from the fact that the entire system call now looks like a7. To limit the number of TLB entries consumed by the
function call, no more interruption thus more of the con- kernel we use a large page size and we pin one entry for
text can be assumed as saved by the compiler, i.e., leskata and one for code using translation registers (TR).



Region 5 is reserved for the kernghalloc()  alloca- i.e., how many 8-byte pointers you can fit into an 8KB
tor. It also holds the gate page used for signal deliverypage 213—3 = 210), Therefore we have a virtual address
and potentially the futurepc code (see section 3.4). space 0f230 %213 = 243 pytes. Each user region ([0-4])
This region being directly above the user regions, it con+epresents /8th of the 43 bits space because of a single
tains a guard page (no access permissions) which is usgzhge table.
to protect against malicious buffer overruns. It also al-
lows to speed up all the routines doing copy from user a0
mode because it greatly simplifies bounds checking: 27 bytes

Y Ox1f ffff8000000000

Ox1ffFffffffffefff

1. before copying we simply check whether the start %
of the buffer is beloWfASK SIZE © (base of region &
5). If so we start copying

g 0x0000007fffffffff

2. Linux uses an exception scheme to copy to/from 2*° bytes
user: just do the blind copy and if something goes  * 0x0000000000000000
wrong, the exception will be generated and execu-
tion will abort with an error code. The guard page
simply ensures that if the first test passes but the

length of the buffer exceeds the boundary then itgjq 1o 9 shows how a user region is broken down in

will be caught by the exception mechanism eveng jeeis. As we mentioned earliear.k7 is pointing

when running at the most privileged level. to the base of the page table tree for the current pro-
cess. The top level page table (pgd) offset is constructed

For regions 0 to 5, the page size is taken from the kernebPy a logical or of the 3 bits of the virtual region num-
configuration. Region 5 has its own kernel-wide pageber (VRN) and bits [33-39]. Bits [40-60] are a signed
table whereas regions 0 to 4 share the same per pr@xtension of bit 39 which creates a software imposed
cess page table. Regions 1,2,3,4 are used for IA-64 prginaccessible region in the middle of the address space.
cess execution. The stack region contains both the memFhis gives the layout depicted in Figure 10 where you
ory stack and the register backing store growing toward$ave a large hole where any access would generate a
each other. Finally region 0 is reserved for Linux/ia32 SIGSEGV
binaries. It is large enougl2{® bytes) to encapsulate
the largest IA-32 address space and does not require ad§ contrast, region 5 has its own page table pointed to by
modification to existing programs. SWAPPERGADDR therefore it has access to the full

43 bit address space as depicted in Figure 11. Similarly,
Although each region i2%' bytes, Linux cannot take bits [43-60] are a signed extension of bit 42.
full advantage of it because of the current design of the .
virtual memory subsystem which is based on a 3-level “
forward mapping page table. In the following discussion
we assume the page size is set to 8KB.

L2 PT(pmd)

7 10 10
oo P ol I
L3 addr

L3 PT(pte) L2 addr 4T> S—

dword T
PTE 4T>

L SWAPPER_PG_DIR
L1 PT(pgd)
L3 addr

Figure 11: Region 5 page table

Figure 10: User region layout

13

10 10
33‘32;23‘22;13‘12

g

page frame

L3 PT(pte)

dword

PTE 4>T

q page frame L1PT(pgd)

I L2 PT(pmd)

L2 addr 4T>

il
ar.k7

In this scheme, increasing the page size actually in-
Figure 9: User region page table creases the size of the address space available because
the intermediate levels can store more pointers. Table 4

. _shows the possible configurations.
In order to use only one page per level each intermedi-

6TASK SIZE =0xa000000000000000 (VHPT) which is used by the TLB hardware walker to
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Ox1fffffffffffffff

| Page size| Address space size (bit$) 1
4KB 39 (512GB)
8KB 43 (8TB)
16KB 47 (128TB)
64KB 55 (32PB)

50

2%° bytes
0ox1f f f f f 8000000000

250 bytes

0x1f fc00003f ffffff

IMPL_VA_MSB

(no user access)

VHPT
I 230 bytes

0x1f f c000000000000

bytes

261

Table 4: Page size/address space OXLfF3FFFFFFfffees

extend TLB lookups in memory. Linux/ia64 takes ad-
vantage of this feature for regions [0-5]. The VHPT can 2 bytes
be configured in two different modes: v 0x0000000000000000

g—— 0x0000007fffffffff

Figure 12: VHPT in a user region
¢ inthe long mode, it behaves like a global hash table

for the entire address space. Itis virtually anchored
in one of the eight regions.

e in the short mode, you have one linear page table
per region which typically consists of the leaf level
of the OS-maintained page table. For each region,

the table is anchored into the address space. ] )
from the region number (VRN). Implementations are

free to implement fewer bits but never less 50. The
In either mode, the table is virtually mapped thereforeconstantiMPL _VA_MSBidentifies the most significant
an access by the walker requires a TLB entry as wellbit of the implemented address space (other than the
The architecture provides separate fault handlers to help’RN), so for Itanium which implements 54 bits, this
distinguish what is going on. The kernel also makes surealue is 50, i.e., 51-1. The architecture defines bits be-
there is no need for a page table to get the mapping fotween [60MPL_VA MSB-1] to be a sign extension of
the walker page. IMPL_VA_MSB Any other combination would generate

a fault. Just like we “virtually” create a zone of no ac-
For Linux/ia64 we decided to use the short mode be-cess, this restriction creates yet another one which is
cause it is a perfect fit for the way virtual memory is much smaller and represents the “real” unimplemented
managed: forward mapping page table. The leaf pagesrea of the virtual address space.
i.e., L3 in Figure 9, are installed into the user region to
satisfy a VHPT walker TLB miss. The structure of the We use the area where bits [51-60] are set to place the
information in L3 PTE has been designed to match exVVHPT in each region. This puts the table just above the
actly the one expected by the walker. One benefit ofunimplemented virtual address space hole. To prevent
this approach is that for every VHPT miss, you actu-any malicious access by the user, the VHPT is mapped
ally make “visible” to the walker 1024 mappings (with with no access at privilege level 3 (user). Any access
8KB pages) covering about 8MB (1024*8KB) worth of would end up in the process being killed b§E5SEGV
address space. Thus if the address space is densely pop-
ulated you, indeed, reduce your chances of getting subin the short mode, each VHPT entry (1entry/page) is ex-
sequent TLB misses for that area. The downside is thaactly 8 bytes, thus the maximum size (with 8KB pages)
you may need up to twice as many TLB entries as withof the VHPT is: 240-13+3 — 230 pytes. So there is
the long mode. Also this mode is less flexible in termsenough room to fit it above the unimplemented virtual
of variable page sizes per region. address space and below the top user accessible region.

The same scheme is used to place the VHPT for region 5.
The table must be mapped inside each region. A good
place to put it is where the user has no access, i.e., in th€o take full benefit of the architecture, future changes
hole created by the sign extension of bit 39 as depicteghotentially include going to a 4 level page table with the
in Figure 12. top level used to index regions giving full 43 bits worth

space per region. This requires of course a redesign of
As alluded to earlier, there is an architected maximunthe generic Linux VM subsystem and would need to be
virtual address space size 8f* where 3 bits come coordinated with all other platforms.
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getpid() to trampoline — sume. When leaving the kernel, tioe _iip field is
User H T copied back intar.iip  then used byfi as the re-
F sume point.

Kernel i
i

brcall ys_getpid) e ramed The trampoline is code installed in the gate page which
i }J is execute-only at the user privilege level. As described
in Section 3.5, this page is anchored in region 5, which

is globally shared. The trampoline code “accepts” three

G usr_handler(n,sigi,sigc) . . . .
a(e page 0 parameters passed in registers viagheregs : the sig-

. . create sigi/sigc on user stack
pending_signal? ———» { cr_iip=trampoline
pt_r3=usr_handler

> frampoline: nal number, the address of the C handler and where the

mov b6=r3 return from getpid() o -
br.call b6 siginfo  andsigcontext  are on the stack.
sigreturn()
User 1
Kernel Vl , r\ﬁ The first thing this code does is to setup the parame-
i e rmsge |4 ters for the C handler then it does the call. Upon return
br.call sys_sigreturn() —h{ up ?:,ei?;r:igcs,i?m sg'c} . .
p=sige=>ip it calls thesigreturn() system call and passes the
sigcontext  via the user memory stack. Back in the
Figure 13: Signal handling kernel, thept _regs contextis updated with the content

of sigcontext then the normal return from system
call code is called and eventually thfé  instruction is
) . executed. Unless thig field of sigcontext was
3.6 Signal handling modified, execution will resume at the return from the
getpid()  system call in our example.

When calling the user handler for a signal, Linux writes
asiginfo  andsigcontext  structures on the user 3.7 [A-32 support
stack. It also dynamically generates, on the same stack,
the stub code to call the handler and return back to the
kernel via asigreturn() system call. The, poten- Using the code contributed by Intel and VA Linux Sys-
tially modified,sigcontext  is used to update the cur- tems, the Linux/ia64 kernel can be configured to run
rently interrupted context and eventually execution re-pure, i.e., no bi-mode processes, Linux/ia32 ELF bi-
sumes at the user level. naries using th€ ONFIGIA32 _SUPPORDption. Al-
though the CPU is able to run native 1A-32 code directly,
For the Linux/ia64 kernel, the principle remains the some kernel support is needed to load the binaries in
same. The implementation, however, differs slightly memory and provide the Linux/IA-32 system call API.
from the above model. We do not generate stub code oliVe only support 1A-32 Linux user mode applications,
the user stack because it is not very efficient and would/ou cannot insert an 1A-32 kernel module.
require a cache flush and potentially a TLB miss every
time a signal is delivered. Instead, we chose a, somewhatinux/ia64 incorporates two loaders: one for ELF32
more elegant, scheme which uses a code trampoline ifdA-32) binaries and one for ELF64 (IA-64) native bina-
stalled in the address space of each process. ries. Onexecve() the kernel checks the type of a bi-
nary and dispatches to the correct loader. The file image
A sample signal delivery is shown in Figure 13, with is then loaded in memory and the application registers
a pending signal detected on return frorgetpid() (AR) pertaining to the 1A-32 emulation, likar.eflag
system call. The first step is to generate the stack framér EFLAGS are initialized. Eventually the initial thread
needed by the user handler. This task is accomplishet created with the IS (Instruction Set) bit of _ipsr
by thesetup _frame() function. Both thesiginfo set to 1 inpt _regs indicating 1A-32 instruction set is
andsigcontext  structures are generated on the userto be used uporfi
memory stack, as usual.
From now on the process is running in IA-32 mode.
Next, instead of generating code, we simply modify From a user’s point of view it is just a matter of invok-
the currenpt _regs structure, which contains most of ing the program at the shell prompt. Dynamically linked
the information needed to get out of the kernel, to re-IA-32 binaries are supported. The 1A-32 dynamic loader
sume execution at the trampoline code. This is accomid-linux.so.2 is used. To avoid a name conflict,
plished by modifying ther _iip field which represents the 1A-64 loader is calledd-linux-ia64.s0.1
where the interruption occurred and also where to re-The runtime linker program support for architecture spe-
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% /sbin/ldconfig -p struct timeval32

libc.s0.6 (libc6) {

=> [usr/ia32-pc-linux/lib/libc.s0.6 int tv_sec, tv_usec;
libc.s0.0 (libc6,lA-64) h

=> /lib/libc.s0.0 struct timeval {
libm.so.6 (libc6) long tv_sec;
=> [usr/ia32-pc-linux/lib/libm.so0.6 long tv_usec;
libm.so0.0 (libc6,lA-64) >

=> /lib/libm.s0.0 static inline long

put_tv32(struct timeval32 *o,
struct timeval *i)

Figure 14: Architecture specific libraries {
return

laccess_ok(VERIFY_WRITE,o,sizeof(*0))

. ) ) || (__put_user(i->tv_sec,&o->tv_sec)
cific shared objects has been enhanced slightly, espe-'| ~— pu user(i->tv_usec,&o0->tv_usec)));

cially the search algorithm. Figure 14 shows an ex-}

cerpt of the output of th&dconfig  command where asmlinkage long

you can see the distinction between architectures. Whesys32_gettimeofday(struct timeval32 *tv,
searching folibm , for instance, the linker, will also struct timezone *tz)
check the architecture to see whether or not it matche$

the architecture of the binary. If not, it will continue ~ Struct timeval ktv;

searching. The figure also shows that IA-32 libraries are ~ 90_gettimeofday(&ktv);

placed in a different directory than the IA-64 ones. It is i (pUtt—tV32g\|’:’A‘E‘f¥?)

to avoid any name conflicts. The specific location used rerim - '

is up to the system administrator and is indicated in the}

/etc/ld/so.conf file as usual.

Figure 15: 32/64 bits conversion

During its execution, the 1A-32 process is going to make

a system call using the IA-32 software triggered in-

terruption instruction;int Ox80 . At this point the For others, likegettimeofday() a systematic con-
Linux/ia64 kernel takes over and execution continuesversion is needed because the data structure used in each
in the IVT in 1A-64 mode at the IA-32 Interrupt en- case is different. In figure 15 we give the example
try. The handler then checks whether or not the in-of gettimeofday() where thetimeval  structures
terrupt was generated for a system call: was it vectodiffer: long fields (64bits) must be converted back to
0x80 ? If that's the case, the IA-32 system call num-int (32bits).

ber normally inEAXand hosted in8 is used to index

the 1A-32 specific system call table. The 1A-32 systemFinally, some system calls vary depending on the value
call arguments are “hosted” on IA-64 fixed registers, i.e.,of the arguments passed. For example, votttl()

not stacked. Therefore they must be copied from thehe type of the third argument depends on the command
pt _regs , where they were saved on entry, to stackedtype, i.e., the 2nd argument. This requires a case by case
registers to call IA-64 code. It should be noted that mostinspection of all possible combinations. Fortunately the
of the principles described for 1A-64 system calls still cases where conversions are needed are rare. Our expe-
hold here: the stacks are switched. rience so far seems to verify this hypothesis.

Because IA-32 and IA-64 Linux implementations use aOne of the benefits of using region 0 for IA-32 binaries is
different data model, i.e., LP32 versus LP64, each I1A-32Zhat the kernel does not have to worry about 32-bit point-
system call must be inspected to look for potential dif-ers interpreted as 64-bit pointers. Everythingis passed in
ferences. Problems are only encountered when dealing4-bit registers and the top 32 bits will be zero no matter
with long integers and pointers because their sizes difwhat because a load of 4 bytes into an 8-byte registers
fer in the two models. will automatically clear the top 4 bytes.

For many system calls there is no impact because there &nother design choice we made was to reuse as much as
either no parameters, like fgetpid() , or the types possible some of the constants used on Linux/ia32. This
of arguments or data structures passed are identical iis true forioctl() command code, signhal numbers,
both cases. errno values. Thus no value conversions are required.
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Another interesting system call immap() when the 4.2 Development tools

page size is different from the native 1A-32 value of

4KB. For applications which don'’t specify a fixed map

address, there is no problem. For others which ask for &s we mentioned during our introduction to the ar-

4KB aligned address, tremap() shim code falls back chitecture the compiler is the key component when it
to doing a copy from the file instead of a pure memorycomes to exploiting the capabilities of the machine. To-
mapping when the kernel is not using 4KB pages. day everything is based on the GNU compiler that Red
Hat (formely Cygnus) has been working on and which
So far this code allowed us the run serious IA-32js based on the early toolchain from HP Labs. This
applications like Netscape Navigator, AcrobatReadertoolchain is robust enough to compile entire distribu-
Applix-5.0, WordPerfect and also some simpler toolstions and Linux kernels. Today, however, it does not yet
like the 1A-32 toolchain. support any of the EPIC optimizations like speculation,
software pipelining, etc. It should soon get the support
There are many other aspects of the kernel that wouldor predication and the rest is planned. Although it is
need to be explained, like how we interact with the plat-|acking those key features, it produces decent code in

form firmware, how do we boot, how do we figure out terms of density (filling up the bundle correctly) and is
how the machine looks like in terms of devices, etc ? Folery stable.

space reasons we do not cover these here but all the ker-

nel code is publicly available and is a unique source ofa few weeks ago SGI also released in source and binary

information. Also there is a mailing list available for dis- forms their IA-64 compiler suite for Linux. It includes

cussing Linux/ia64 related topics. All the informationto the C, C++ and also Fortran90 compilers. It is GNU

subscribe is available at http://www.linuxia64.org. compatible and can therefore be used to recompile most
of the packages used by Linux. The current binary dis-
tribution is meant to be used with the 1A64 SDK (see
section 5) and is a cross compiler only at this point in
time.

4 User land
The other development tools available include the GNU
debuggergdb, strace to get system call traces for
both IA-64 and IA-32 binaries and also the GNU pro-

The kernel is a key piece of the system but, in reality,filer, gprof .

it represents only a small portion of what needs to be

present to get a complete system. In this section, we\ port of the Performance Counter LibrdrPCL), con-

give a quick overview of where we are in terms of usertributed by IBM, exists and uses some of the capabilities

level support: libraries, tools, environments, etc. of the Performance Monitoring Unit (PMU). The kernel
provides thesys _perfmonctl() system call to con-
trol how monitoring is done.

4.1 Libraries For kernel developments, a kernel debugger, contributed
by SGI and Intel, calleddb is available as a separate
patch to the kernel. It provides assembly level debugging

o _ . _ of a running kernel using the local console or a serial
Most of the key libraries are available in both static andjine. The latest version is available from the HP Labs

shared forms. The current IA-64 libc/libm is based ongTp sité.

GNU libcv2.1. The port of the version 2.2 is in progress.

Some EPIC optimizations are present in the C library

for some performance critical routines, likemcpy() , 4.3 X11 environment
strcpy() , etc. The default math library however is

not optimized at all and uses the generic C code. When

the kernel source got released, Intel contributed an op- . :
timized version of the math library which provides thepWe are currently using version 3.3.6 of the XFree86

same API. Itis entirely written in assembly language anddlsmbu“on' Work is under way to get the latest 4.0

highly optimized. The pthread support is present in theversion working. The GNOME environment, including

currentlibc  and is mostly derived from the Java Work ~ 7see hitp:/mww.fz-juelich.de/zam/PCL
going on at HP Labs. 8see ftp://ftp.hpl.hp.com/publ/linux-ia64
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enlightenment  andgimp, is available. Other win- and are actively porting their distributions to the 1A-64
dow managers known to work includegywm andWin- platform to be ready for product launch.
dowMaker to name a few.
Today, the TurboLinux and Red Hat “alpha” distribu-
We have also successfully been able to get live video distions are directly available from their respective web
played with thexawtv ° program. Thevideo4linux sites. You need real hardware to use them but most of
kernel code was used to interface with either a USB welihe packages could be used with the IA64SDK (see sec-
camera or directly with théttv  driver controlling a  tion 5). Although they are not yet fully complete and
frame grabber card. require semi-automatic installation, they all come with
shared libraries, C/C++ development tools, X server, X
desktop components, apache, perl, python, emacs and
4.4 Java also some IA-32 packages.

Several Java implementations are available on

Linux/ia32.  Fairly direct ports of the Sun Java 5 The IA-64 Linux SDK
Virtual Machine are available from Sun itself and

from blackdown.org . IBM has made available

ports of their Sun-derived virtual machines. Severalye recenﬂy released an |A-64 software de\/e|opment
less complete open source Java environments, notablt for Linux/ia32 (IA64SDK). This environment al-
kaffe , are also available. We expect several of thesgows developers without IA-64 hardware access to cre-
to be ported to IA-64 by their respective developers.  ate and port user level applications to Linux/ia64 on any
Linux/ia32 systems. In this environment, not only can
AtHP Labs, we have been focusing on the Java to nativgisers compile applications and generate 1A-64 binaries
code approach using thlgej compiler. This is a front  put they can also run those binaries directly at the shell

end to the GNU compiler which translates Java sourcgyrompt. Linux/ia64 kernel developments are also possi-
code or bytecode into native code. The Java runtimee.

environment is recreated using a runtime library, which

includes an interpreter for dynamically loaded code. Al-This package is based on the NUE (Native User Envi-

though it currently provides incomplete library support, ronment) developed at HP Labs during the early phase
it offered us an existing IA-64 compiler back-end, the of the project when machines were not yet available and
opportunity to immediately look at Java run-time is- when the system was not yet self-hosted. The idea is to
sues with compiled client code, very competitive perfor-create an environment as close as possible from what a
mance, fast and convenient multi-language support, andser would get on a real Linux/ia64 system. This means

the ability to generate fast-starting native applicationsthat you get a shell, you can type commands, edit files,

We expect this may become an important complemengompile programs and run them. The magic is to make

to a traditional Java Virtual Machine. this happen on an 1A-32 system of today.

With cooperation from Red Hat and others, we havet the core of the package is the HP 1A-64 instruction
successfully ported the runtime library to Linux/ia64. set simulator, which simulates an IA-64 CPU but not the

The compiler required essentially no porting beyond theentire platform (no BIOS nor PCI). This simulator has
(gcc) portitself. The 1A-64 port is now part of the stan- two modes of execution:

dard (ibgcj ) distribution. We have since been con-

centrating on enhancing the performance and multipro-

cessor scalability of the garbage collector, both gener- e the user mode: allows to run IA-64 applications

ally, and on 1A-64 specifically. directly on top of a Linux/ia32 kernel. The simu-
lation stops at the system call level. Each call is
translated into its Linux/ia32 equivalent. Most of

4.5 Distributions the time only 32 to 64 bit parameter marshaling is
required.

o the kernel mode: the entire IA-64 CPU is simulated
including virtual memory and interrupts behaviors.
In this mode, it is possible to boot a Linux/ia64 ker-
9see http://me.in-berlin.de/ kraxel/xawtv.html nel.

All the major Linux distributors (Caldera, Red Hat,
SuSe, TurboLinux) are part of the IA-64 Linux project
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(s ] [vi ] [bash]
% /bin/arch

686
B = ..

% /bin/arch
1A-64 simulator I1A-64 simulator :
(kernel mode) (user mode) ia64
% Id -V

_ _ GNU Id version 2.9-ia64-000216
Lm0 HInEs (with BFD 2.9-ia64-000216)
Supported emulations:

_ , elf64_ia64
[ ] 1A-32binary [l 1A-64 binary % file /usr/bin/ld

. . ELF 32-bit LSB executable, Intel 80386,
Figure 16: Execution modes version 1, dynamically linked, stripped
% cc hello.c -0 hello
% file hello

) _ ) hello: ELF 64-bit LSB executable, 1A-64
Linux provides a kernel module calldginfmt _misc version 1, dynamically linked

which allows one to dynamically bind command inter- (uses shared libs), not stripped

preters to binaries using the magic numbers. When you

combine the batch mode execution of the simulator (run- Figure 17: output of commands in /nue

ning user mode) with this capability, you, indeed, get

transparent invocations at the shell prompt. With this

mechanism in place one can execute Linux/ia32 andvhich is typically called by thewue(l) command to

Linux/ia64 binaries transparently. This provides the ex-‘enter” the environment. Once in NUE, the system acts

ecution capability. like a Linux/ia64 systems as shown by the few shell
commands in figure 17.

The other facet of NUE is to hide the cross-development

nature of the platform. The IA-64 compiler must be You can simply recompile existing RPM packages us-

called/usr/bin/cc  , the linker/usr/bin/ld ~ , the  ing a simplerpm command as shown in Figure 18 and

standard headers files must béusr/include ,etc. unless some porting effort is required, you will get the

This makes life so much easier when porting existingequivalent binary RPM automatically.

packages. In a typical cross-development environment

those files are usually found in “exotic” places becauseSource level debugging of user applications is possible

they cannot conflict with the native system of the plat-using the simulator explicitly on an IA-64 binary.

form. Moreover a lot of fiddling is usually required to

M_akefiles_ to chan_ge p_athnames. It is even worse,, rpm --rebuild mingetty-0.9.4-10.src.rpm

with configure  scripts, i.e., autoconf, because here,lnsta”ing mingetty-0.9.4-10.src.rpm

not only paths must be changed but also special care igyilding target platforms: ia64

required for the test programs used: they must capturguilding for target ia64

IA-64 characteristics not IA-32. Many tests programsExecuting: %prep

require actual execution to generate results, like a test.

for the size of a long integer, for instance.

I x86 Hardware | x86 Hardware

Figure 18: Rebuilding RPMs
To alleviate the problem NUE has its own "shadow”
tree that is installed undénue . In this tree, you find Kernel developments are possible using the simulator.
mostly Linux/ia32 binaries for tools like editors, net- To get a working kernel you need to compile it for the

work commands, etc. Buhue/usr/bin/cc isa HP simulator and enable the simulated device drivers
Linux/ia32 binaries that produces 1A-64 code, i.e., itwe developed. Basically, you need a simulated se-
is a cross-compiler. Undénue/usr/include you rial console ¢§imserial ), a simulated scsi controller
find the Linux/ia64 headers files, undaue/lib and (simscsi ) and, optionally, a simulated Ethernet con-
/nue/usr/lib you find 1A-64 shared and static li- troller (simeth ) to get full functionality. More details
braries, etc. on how some of those drivers work can be found in [2].

The SDK is shipped with a mini disk image contain-
The last piece of magic is to make this look like the na-ing a simplified TurboLinux/ia64 alpha distribution that
tive 1A-64 environment by getting rid of thimue pre-  can be used to boot the Linux/ia64 kernel. Even though
fix. This is accomplish by simply doingehroot(2) hardware is now becoming available, we think that hav-
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ing a simulator is very valuable for debugging purposesthe project, the entire source code for the kernel and
It is extremely useful for debugging very low level code other key components of the system are publicly avail-
early on in the development cycle. Figure 19 shows theable making it the first OS available for this new archi-
simulated serial console at the top and the simulator contecture. The kernel support has been merged by Linus
trol window at the bottom. into the official mainline kernel.

Although we have been focusing on Linux developmentAlthough there is still a lot of work to do in terms of per-
with this simulator, there is nothing that precludes de-formance tuning and debugging, the system is already
velopments of other Open Source OSes, like FreeBSyery usable. Most of the packages one would expect to
or NetBSD, for instance. find on a Linux system are present including debuggers,
toolchains and a graphical environment. We will con-

o Mg ower x tinue to actively develop the system and expect to use it
#:gS?r: g?ract-ncczggeu SIHLATED D15k z;;i gég? revigion; 02 as the baSIS for our SyStem researCh
Detected scsi disk sda at scsi0d, channel . id O, lun
=csioodetected 1 5CSI disk tEtal. _ . . . . ) . .
oo ot emmosaooporaaae. oo ML Distributors are working to get full distributions by the
SCSI device sda; hdwr sector= 512 bytes, Sectors= 2097152 [1024 HE] [1,0 GB] . .
Partition check: time the product comes to market such that it would be

sdag sdal
simeth: wi,2 alpha very easy to bootstrap systems.
ethil; hosteth=eth) simfd=8, Hufddr 00 10 83 00 bd 26, IRO 237
EFI Time Services Driver ui,2

k. create; Forcing size word alignment - nfs_fh

Mounted root (ext2 filesysten) readonly, Now that all the sources are available, it becomes possi-

eeing unuzed kernel memory: 72kB freed

Losting. suss part cions ble for anybody to port existing applications or develop
i ot 1lesustans. new ones for this platform. Although Itanium prototypes
rallelizing fsck wersion 1,18 (11-MNow-1999) . .

shin/fci,oxt? — 7] fack.ext? -a -0 Jdev/sdal exist, they are still hard to get. To help foster Open

ewsadal was not cleanly unmounted, check forced,

Source developments, we have released an IA-64 soft-
: _ ware development kit which allows users with no hard-
-------------------------------------------------------- ware access to get involved with Linux/ia64 today by
simply using their Linux/ia32 machines. This kit allows
user and kernel level developments and is not limited to
Linux.

All the pieces are now available to really jumpstart an
active Linux community around this new platform. Our
----------- effort proves that the Open Source development model

i i is also possible across the industry and that competitors
can join forces and contribute a major piece of software
back to the community.

Figure 19: Booting Linux/ia64

The 1A64-SDK is available in Red Hat RPM packages
from the HP software depot web sife Acknowledgments
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